|
Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2012, Volume 18, Number 3, Pages 10–22
(Mi timm833)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
$ABA$-groups with cyclic subgroup $B$
B. Amberga, L. S. Kazarinb a Johannes Gutenberg-Universität, Mainz
b Кафедра алгебры и мат. логики, Ярославский гос. университет им. П. Г. Демидова
Abstract:
Some criteria to the solubility of groups of the form $G=ABA$ with a nilpotent subgroup $A$ and a cyclic subgroup $B$ are derived. In particular, it is proved (using the classification of the finite simple groups) that the finite group $G=ABA$ is soluble if $A$ is a nilpotent group of odd order and $B$ is a cyclic group and $(|A|,|B|)=1$.
Keywords:
simple group, Lie type group, sporadic simple group.
Received: 30.01.2012
Citation:
B. Amberg, L. S. Kazarin, “$ABA$-groups with cyclic subgroup $B$”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 3, 2012, 10–22
Linking options:
https://www.mathnet.ru/eng/timm833 https://www.mathnet.ru/eng/timm/v18/i3/p10
|
Statistics & downloads: |
Abstract page: | 481 | Full-text PDF : | 115 | References: | 68 | First page: | 2 |
|