Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2012, Volume 18, Number 2, Pages 265–280 (Mi timm828)  

This article is cited in 7 scientific papers (total in 7 papers)

Solution of nonlinear partial differential equations by the geometric method

L. I. Rubinaa, O. N. Ul'yanovab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Ural Federal University
Full-text PDF (227 kB) Citations (7)
References:
Abstract: The earlier proposed geometric method of investigation of nonlinear partial differential equations is developed. The heat equation describing blow-up regimes and the equation for the flow function in a boundary layer are studied. We propose a modification of the method based on the specific character of the equations and show its applicability in the case under consideration. Classes of particular exact solutions are found and a boundary value problem is solved.
Keywords: nonlinear partial differential equations, heat equation, equation for the flow function in a boundary layer, exact solutions.
Received: 08.09.2011
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: L. I. Rubina, O. N. Ul'yanov, “Solution of nonlinear partial differential equations by the geometric method”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 2, 2012, 265–280
Citation in format AMSBIB
\Bibitem{RubUly12}
\by L.~I.~Rubina, O.~N.~Ul'yanov
\paper Solution of nonlinear partial differential equations by the geometric method
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 2
\pages 265--280
\mathnet{http://mi.mathnet.ru/timm828}
\elib{https://elibrary.ru/item.asp?id=17736206}
Linking options:
  • https://www.mathnet.ru/eng/timm828
  • https://www.mathnet.ru/eng/timm/v18/i2/p265
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024