Abstract:
A complete asymptotic expansion as x→±∞ of the Gurevich–Pitaevskii universal special solution of the Korteweg–de Vries equation ut+uxxx+uux=0 is constructed and validated. The expansion is infinitely differentiable in the variables t and x and, together with the asymptotic expansions of all its derivatives in independent variables, is uniform on any compact interval of variation of the time t.
Citation:
B. I. Suleimanov, “Asymptotics of the Gurevich–Pitaevskii universal special solution of the Korteweg–de Vries equation as |x|→∞”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 2, 2012, 245–253; Proc. Steklov Inst. Math. (Suppl.), 281, suppl. 1 (2013), 137–145
\Bibitem{Sul12}
\by B.~I.~Suleimanov
\paper Asymptotics of the Gurevich--Pitaevskii universal special solution of the Korteweg--de Vries equation as~$|x|\to\infty$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 2
\pages 245--253
\mathnet{http://mi.mathnet.ru/timm826}
\elib{https://elibrary.ru/item.asp?id=17736204}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2013
\vol 281
\issue , suppl. 1
\pages 137--145
\crossref{https://doi.org/10.1134/S0081543813050131}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000320460300013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879178142}
Linking options:
https://www.mathnet.ru/eng/timm826
https://www.mathnet.ru/eng/timm/v18/i2/p245
This publication is cited in the following 3 articles:
Dan Dai, Wen-Gao Long, “Asymptotics and Total Integrals of the \(\textrm{P}_{\textrm I}^2\) Tritronquée Solution and Its Hamiltonian”, SIAM J. Math. Anal., 56:4 (2024), 5350
V.E. Adler, “Nonautonomous symmetries of the KdV equation and step-like solutions”, JNMP, 27:3 (2020), 478
B. I. Suleimanov, ““Quantizations” of Higher Hamiltonian Analogues of the Painlevé I and Painlevé II Equations with Two Degrees of Freedom”, Funct. Anal. Appl., 48:3 (2014), 198–207