Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2012, Volume 18, Number 2, Pages 123–140 (Mi timm814)  

Analysis of the Bloch equations for the nuclear magnetization model

L. A. Kalyakin

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
References:
Abstract: We consider a system of three ordinary first-order differential equations known in the theory of nuclear magnetism as the Bloch equations. The system contains four dimensionless parameters as coefficients. Equilibrium states and the dependence of their stability on these parameters is investigated. The possibility of the appearance of two stable equilibrium states is discovered. The equations are integrable in the absence of dissipation. For the problem with small dissipation far from equilibrium, approximate solutions are constructed by the method of averaging.
Keywords: nonlinear equations, equilibrium, dissipation, stability, asymptotics, averaging.
Received: 10.10.2011
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2013, Volume 281, Issue 1, Pages 64–81
DOI: https://doi.org/10.1134/S0081543813050076
Bibliographic databases:
Document Type: Article
UDC: 517.928
Language: Russian
Citation: L. A. Kalyakin, “Analysis of the Bloch equations for the nuclear magnetization model”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 2, 2012, 123–140; Proc. Steklov Inst. Math. (Suppl.), 281, suppl. 1 (2013), 64–81
Citation in format AMSBIB
\Bibitem{Kal12}
\by L.~A.~Kalyakin
\paper Analysis of the Bloch equations for the nuclear magnetization model
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 2
\pages 123--140
\mathnet{http://mi.mathnet.ru/timm814}
\elib{https://elibrary.ru/item.asp?id=17736192}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2013
\vol 281
\issue , suppl. 1
\pages 64--81
\crossref{https://doi.org/10.1134/S0081543813050076}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000320460300007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879178677}
Linking options:
  • https://www.mathnet.ru/eng/timm814
  • https://www.mathnet.ru/eng/timm/v18/i2/p123
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:349
    Full-text PDF :133
    References:47
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024