Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2012, Volume 18, Number 2, Pages 67–79 (Mi timm809)  

This article is cited in 5 scientific papers (total in 5 papers)

Asymptotic representation of a solution to a singular perturbation linear time-optimal problem

A. R. Danilinab, O. O. Kovrizhnykhab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Ural Federal University
Full-text PDF (207 kB) Citations (5)
References:
Abstract: A time-optimal control problem is considered for a linear system with fast and slow variables and smooth geometric constraints on the control. An asymptotic expansion of the optimal time up to the second order of smallness is constructed and validated.
Keywords: optimal control, time-optimal control problem, asymptotic expansion, singular perturbation problems, small parameter.
Received: 20.12.2011
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2013, Volume 281, Issue 1, Pages 22–35
DOI: https://doi.org/10.1134/S0081543813050039
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: A. R. Danilin, O. O. Kovrizhnykh, “Asymptotic representation of a solution to a singular perturbation linear time-optimal problem”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 2, 2012, 67–79; Proc. Steklov Inst. Math. (Suppl.), 281, suppl. 1 (2013), 22–35
Citation in format AMSBIB
\Bibitem{DanKov12}
\by A.~R.~Danilin, O.~O.~Kovrizhnykh
\paper Asymptotic representation of a~solution to a~singular perturbation linear time-optimal problem
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 2
\pages 67--79
\mathnet{http://mi.mathnet.ru/timm809}
\elib{https://elibrary.ru/item.asp?id=17736187}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2013
\vol 281
\issue , suppl. 1
\pages 22--35
\crossref{https://doi.org/10.1134/S0081543813050039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000320460300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879150678}
Linking options:
  • https://www.mathnet.ru/eng/timm809
  • https://www.mathnet.ru/eng/timm/v18/i2/p67
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:609
    Full-text PDF :123
    References:93
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024