Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2012, Volume 18, Number 2, Pages 48–61 (Mi timm807)  

This article is cited in 2 scientific papers (total in 2 papers)

On Friedrichs inequalities for a disk

R. R. Gadyl'shin, E. A. Shishkina

Bashkir State Pedagogical University
Full-text PDF (210 kB) Citations (2)
References:
Abstract: We consider the Friedrichs inequality for functions defined on a disk of unit radius $\Omega$ and equal to zero on almost all boundary except for an arc $\gamma_\varepsilon$ of length $\varepsilon$, where $\varepsilon$ is a small parameter. Using the method of matched asymptotic expansions, we construct a two-term asymptotics for the Friedrichs constant $C(\Omega,\partial\Omega\backslash\overline\gamma_\varepsilon)$ for such functions and present a strict proof of its validity. We show that $C(\Omega,\partial\Omega\backslash\overline\gamma_\varepsilon)=C(\Omega,\partial\Omega)+\varepsilon^2C(\Omega,\partial\Omega)(1+O(\varepsilon^{2/7}))$. The calculation of the asymptotics for the Friedrichs constant is reduced to constructing an asymptotics for the minimum value of the operator $-\Delta$ in the disk with Neumann boundary condition on $\gamma_\varepsilon$ and Dirichlet boundary condition on the remaining part of the boundary.
Keywords: Friedrichs inequality, small parameter, eigenvalue, asymptotics.
Received: 29.09.2011
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2013, Volume 281, Issue 1, Pages 44–58
DOI: https://doi.org/10.1134/S0081543813050052
Bibliographic databases:
Document Type: Article
UDC: 517.956
Language: Russian
Citation: R. R. Gadyl'shin, E. A. Shishkina, “On Friedrichs inequalities for a disk”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 2, 2012, 48–61; Proc. Steklov Inst. Math. (Suppl.), 281, suppl. 1 (2013), 44–58
Citation in format AMSBIB
\Bibitem{GadShi12}
\by R.~R.~Gadyl'shin, E.~A.~Shishkina
\paper On Friedrichs inequalities for a~disk
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 2
\pages 48--61
\mathnet{http://mi.mathnet.ru/timm807}
\elib{https://elibrary.ru/item.asp?id=17736185}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2013
\vol 281
\issue , suppl. 1
\pages 44--58
\crossref{https://doi.org/10.1134/S0081543813050052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000320460300005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879162667}
Linking options:
  • https://www.mathnet.ru/eng/timm807
  • https://www.mathnet.ru/eng/timm/v18/i2/p48
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:398
    Full-text PDF :121
    References:71
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024