Abstract:
We consider the Friedrichs inequality for functions defined on a disk of unit radius Ω and equal to zero on almost all boundary except for an arc γε of length ε, where ε is a small parameter. Using the method of matched asymptotic expansions, we construct a two-term asymptotics for the Friedrichs constant C(Ω,∂Ω∖¯¯¯γε) for such functions and present a strict proof of its validity. We show that C(Ω,∂Ω∖¯¯¯γε)=C(Ω,∂Ω)+ε2C(Ω,∂Ω)(1+O(ε2/7)). The calculation of the asymptotics for the Friedrichs constant is reduced to constructing an asymptotics for the minimum value of the operator −Δ in the disk with Neumann boundary condition on γε and Dirichlet boundary condition on the remaining part of the boundary.
Keywords:
Friedrichs inequality, small parameter, eigenvalue, asymptotics.
Citation:
R. R. Gadyl'shin, E. A. Shishkina, “On Friedrichs inequalities for a disk”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 2, 2012, 48–61; Proc. Steklov Inst. Math. (Suppl.), 281, suppl. 1 (2013), 44–58
\Bibitem{GadShi12}
\by R.~R.~Gadyl'shin, E.~A.~Shishkina
\paper On Friedrichs inequalities for a~disk
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 2
\pages 48--61
\mathnet{http://mi.mathnet.ru/timm807}
\elib{https://elibrary.ru/item.asp?id=17736185}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2013
\vol 281
\issue , suppl. 1
\pages 44--58
\crossref{https://doi.org/10.1134/S0081543813050052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000320460300005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879162667}
Linking options:
https://www.mathnet.ru/eng/timm807
https://www.mathnet.ru/eng/timm/v18/i2/p48
This publication is cited in the following 2 articles:
R. R. Gadyl'shin, S. V. Repjevskij, E. A. Shishkina, “On an eigenvalue for the Laplace operator in a disk with Dirichlet boundary condition on a small part of the boundary in a critical case”, Proc. Steklov Inst. Math. (Suppl.), 292, suppl. 1 (2016), 76–90
R. R. Gadylshin, A. A. Ershov, S. V. Repyevsky, “On asymptotic formula for electric resistance of conductor with small contacts”, Ufa Math. J., 7:3 (2015), 15–27