Processing math: 100%
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2012, Volume 18, Number 2, Pages 22–37 (Mi timm805)  

This article is cited in 12 scientific papers (total in 12 papers)

On a PT-symmetric waveguide with a pair of small holes

D. I. Borisovab

a Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
b Bashkir State Pedagogical University
References:
Abstract: A planar PT-symmetric waveguide with a pair of small holes is considered. The waveguide is modeled by a planar infinite strip in which a pair of symmetric small holes is cut out. The operator is the Laplacian with PT-symmetric boundary condition at the edges of the strip and Neumann condition at the boundaries of the holes. For this operator, the uniform resolvent convergence is established and the convergence rate is estimated. The effect of the generation by the holes of new eigenvalues from the boundary of the continuous spectrum is studied. Sufficient conditions for the existence and absence of such eigenvalues are obtained and the first terms of their asymptotic expansions are found.
Keywords: PT-symmetric waveguide, small hole, uniform resolvent convergence, asymptotics.
Received: 12.09.2011
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2013, Volume 281, Issue 1, Pages 5–21
DOI: https://doi.org/10.1134/S0081543813050027
Bibliographic databases:
Document Type: Article
UDC: 517.984.5+517.955.8
Language: Russian
Citation: D. I. Borisov, “On a PT-symmetric waveguide with a pair of small holes”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 2, 2012, 22–37; Proc. Steklov Inst. Math. (Suppl.), 281, suppl. 1 (2013), 5–21
Citation in format AMSBIB
\Bibitem{Bor12}
\by D.~I.~Borisov
\paper On a~$\mathcal{PT}$-symmetric waveguide with a~pair of small holes
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 2
\pages 22--37
\mathnet{http://mi.mathnet.ru/timm805}
\elib{https://elibrary.ru/item.asp?id=17736183}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2013
\vol 281
\issue , suppl. 1
\pages 5--21
\crossref{https://doi.org/10.1134/S0081543813050027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000320460300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879143282}
Linking options:
  • https://www.mathnet.ru/eng/timm805
  • https://www.mathnet.ru/eng/timm/v18/i2/p22
  • This publication is cited in the following 12 articles:
    1. D. I. Borisov, P. Exner, “Approximation of point interactions by geometric perturbations in two-dimensional domains”, Bull. Math. Sci., 13:02 (2023)  crossref
    2. Denis Ivanovich Borisov, “Geometric Approximation of Point Interactions in Two-Dimensional Domains for Non-Self-Adjoint Operators”, Mathematics, 11:4 (2023), 947  crossref
    3. D. I. Borisov, “Norm Resolvent Convergence of Elliptic Operators in Domains with Thin Spikes”, J Math Sci, 261:3 (2022), 366  crossref
    4. D. B. Davletov, O. B. Davletov, R. R. Davletova, A. A. Ershov, “Skhodimost sobstvennykh elementov kraevoi zadachi tipa Steklova dlya operatora Lame”, Tr. IMM UrO RAN, 27, no. 1, 2021, 37–47  mathnet  crossref  elib
    5. D. I. Borisov, D. A. Zezyulin, “Bifurcations of Essential Spectra Generated by a Small Non-Hermitian Hole. I. Meromorphic Continuations”, Russ. J. Math. Phys., 28:4 (2021), 416  crossref
    6. D. I. Borisov, G. Cardone, G. A. Chechkin, Yu. O. Koroleva, “On elliptic operators with Steklov condition perturbed by Dirichlet condition on a small part of boundary”, Calc. Var., 60:1 (2021)  crossref
    7. D. I. Borisov, M. N. Konyrkulzhaeva, “Simplest graphs with small edges: asymptotics for resolvents and holomorphic dependence of spectrum”, Ufa Math. J., 11:2 (2019), 56–70  mathnet  crossref  isi
    8. Paul B., Dhar H., Chowdhury M., Saha B., “Treating Ostrogradski Instability For Galilean Invariant Chern-Simon'S Model Via Pt Symmetry”, Phys. Rev. D, 99:6 (2019), 065018  crossref  isi
    9. D. I. Borisov, A. I. Mukhametrakhimova, “The Norm Resolvent Convergence for Elliptic Operators in Multi-Dimensional Domains with Small Holes”, J Math Sci, 232:3 (2018), 283  crossref
    10. D. B. Davletov, D. V. Kozhevnikov, “The problem of Steklov type in a half-cylinder with a small cavity”, Ufa Math. J., 8:4 (2016), 62–87  mathnet  crossref  isi  elib
    11. D.I. Borisov, “The Emergence of Eigenvalues of a PT-Symmetric Operator in a Thin Strip”, Math. Notes, 98:6 (2015), 872–883  mathnet  crossref  crossref  mathscinet  isi  elib
    12. D.I. Borisov, “Discrete spectrum of thin PT-symmetric waveguide”, Ufa Math. J., 6:1 (2014), 29–55  mathnet  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:483
    Full-text PDF :139
    References:84
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025