Abstract:
A planar PT-symmetric waveguide with a pair of small holes is considered. The waveguide is modeled by a planar infinite strip in which a pair of symmetric small holes is cut out. The operator is the Laplacian with PT-symmetric boundary condition at the edges of the strip and Neumann condition at the boundaries of the holes. For this operator, the uniform resolvent convergence is established and the convergence rate is estimated. The effect of the generation by the holes of new eigenvalues from the boundary of the continuous spectrum is studied. Sufficient conditions for the existence and absence of such eigenvalues are obtained and the first terms of their asymptotic expansions are found.
Keywords:PT-symmetric waveguide, small hole, uniform resolvent convergence, asymptotics.
Citation:
D. I. Borisov, “On a PT-symmetric waveguide with a pair of small holes”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 2, 2012, 22–37; Proc. Steklov Inst. Math. (Suppl.), 281, suppl. 1 (2013), 5–21
\Bibitem{Bor12}
\by D.~I.~Borisov
\paper On a~$\mathcal{PT}$-symmetric waveguide with a~pair of small holes
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 2
\pages 22--37
\mathnet{http://mi.mathnet.ru/timm805}
\elib{https://elibrary.ru/item.asp?id=17736183}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2013
\vol 281
\issue , suppl. 1
\pages 5--21
\crossref{https://doi.org/10.1134/S0081543813050027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000320460300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879143282}
Linking options:
https://www.mathnet.ru/eng/timm805
https://www.mathnet.ru/eng/timm/v18/i2/p22
This publication is cited in the following 12 articles:
D. I. Borisov, P. Exner, “Approximation of point interactions by geometric perturbations in two-dimensional domains”, Bull. Math. Sci., 13:02 (2023)
Denis Ivanovich Borisov, “Geometric Approximation of Point Interactions in Two-Dimensional Domains for Non-Self-Adjoint Operators”, Mathematics, 11:4 (2023), 947
D. I. Borisov, “Norm Resolvent Convergence of Elliptic Operators in Domains with Thin Spikes”, J Math Sci, 261:3 (2022), 366
D. B. Davletov, O. B. Davletov, R. R. Davletova, A. A. Ershov, “Skhodimost sobstvennykh elementov kraevoi zadachi tipa Steklova dlya operatora Lame”, Tr. IMM UrO RAN, 27, no. 1, 2021, 37–47
D. I. Borisov, D. A. Zezyulin, “Bifurcations of Essential Spectra Generated by a Small Non-Hermitian Hole. I. Meromorphic Continuations”, Russ. J. Math. Phys., 28:4 (2021), 416
D. I. Borisov, G. Cardone, G. A. Chechkin, Yu. O. Koroleva, “On elliptic operators with Steklov condition perturbed by Dirichlet condition on a small part of boundary”, Calc. Var., 60:1 (2021)
D. I. Borisov, M. N. Konyrkulzhaeva, “Simplest graphs with small edges: asymptotics for resolvents and holomorphic dependence of spectrum”, Ufa Math. J., 11:2 (2019), 56–70
Paul B., Dhar H., Chowdhury M., Saha B., “Treating Ostrogradski Instability For Galilean Invariant Chern-Simon'S Model Via Pt Symmetry”, Phys. Rev. D, 99:6 (2019), 065018
D. I. Borisov, A. I. Mukhametrakhimova, “The Norm Resolvent Convergence for Elliptic Operators in Multi-Dimensional Domains with Small Holes”, J Math Sci, 232:3 (2018), 283
D. B. Davletov, D. V. Kozhevnikov, “The problem of Steklov type in a half-cylinder with a small cavity”, Ufa Math. J., 8:4 (2016), 62–87
D.I. Borisov, “The Emergence of Eigenvalues of a PT-Symmetric Operator in a Thin Strip”, Math. Notes, 98:6 (2015), 872–883