Abstract:
The convergence in the mean-square metric of the Lavrent'ev regularization method for an integral equation with involution is established. The proof of the convergence is based on studying the behavior of the resolvent of a certain integro-differential equation related to the original equation.
Keywords:
integral equation, regularization, involution, resolvent.
Citation:
A. P. Khromov, G. V. Khromova, “On the convergence of the Lavrent'ev method for an integral equation of the first kind with involution”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 1, 2012, 289–297; Proc. Steklov Inst. Math. (Suppl.), 280, suppl. 1 (2013), 88–97
\Bibitem{KhrKhr12}
\by A.~P.~Khromov, G.~V.~Khromova
\paper On the convergence of the Lavrent'ev method for an integral equation of the first kind with involution
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 1
\pages 289--297
\mathnet{http://mi.mathnet.ru/timm798}
\elib{https://elibrary.ru/item.asp?id=17358697}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2013
\vol 280
\issue , suppl. 1
\pages 88--97
\crossref{https://doi.org/10.1134/S0081543813020089}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000317236500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84875998187}
Linking options:
https://www.mathnet.ru/eng/timm798
https://www.mathnet.ru/eng/timm/v18/i1/p289
This publication is cited in the following 1 articles: