Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2012, Volume 18, Number 1, Pages 69–81 (Mi timm780)  

This article is cited in 6 scientific papers (total in 7 papers)

Polynomial Volterra equations of the first kind and the Lambert function

A. S. Apartsyn

L. A. Melentiev Energy Systems Institute, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (201 kB) Citations (7)
References:
Abstract: The role of the Lambert function in the theory of polynomial Volterra equations of the first kind is considered. New results are presented in addition to the known ones. In particular, the stability of a continuous solution of the first-kind polynomial Volterra equation of degree $N$ is investigated. Based on the techniques of majorant equations, sufficient stability conditions are obtained.
Keywords: polynomial Volterra equations of the first kind, Lambert function.
Received: 12.07.2011
Bibliographic databases:
Document Type: Article
UDC: 518.517
Language: Russian
Citation: A. S. Apartsyn, “Polynomial Volterra equations of the first kind and the Lambert function”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 1, 2012, 69–81
Citation in format AMSBIB
\Bibitem{Apa12}
\by A.~S.~Apartsyn
\paper Polynomial Volterra equations of the first kind and the Lambert function
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 1
\pages 69--81
\mathnet{http://mi.mathnet.ru/timm780}
\elib{https://elibrary.ru/item.asp?id=17358679}
Linking options:
  • https://www.mathnet.ru/eng/timm780
  • https://www.mathnet.ru/eng/timm/v18/i1/p69
  • This publication is cited in the following 7 articles:
    1. S. V. Solodusha, Yu. I. Kokonova, “Zadacha identifikatsii vkhodnogo signala dinamicheskikh sistem, modeliruemykh polinomami Volterra”, Materialy 5 Mezhdunarodnoi konferentsii «Dinamicheskie sistemy i kompyuternye nauki: teoriya i prilozheniya» (DYSC 2023). Irkutsk, 18-23 sentyabrya 2023 g., Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 234, VINITI RAN, M., 2024, 83–90  mathnet  crossref
    2. S. V. Solodusha, “Anatolii Solomonovich Apartsin. Nauchnoe nasledie”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 50 (2024), 170–179  mathnet  crossref
    3. S. V. Solodusha, E. Yu. Grazhdantseva, “Testovoe polinomialnoe uravnenie Volterra I roda v zadache identifikatsii vkhodnykh signalov”, Tr. IMM UrO RAN, 27, no. 4, 2021, 161–174  mathnet  crossref  elib
    4. С. V. Solodusha, “Modeling heat exchangers by quadratic Volterra polynomials”, Autom. Remote Control, 75:1 (2014), 87–94  mathnet  crossref  isi
    5. Solodusha S.V., “Chislennoe modelirovanie dinamiki teploobmena modifitsirovannym kvadratichnym polinomom volterry”, Vychislitelnye tekhnologii, 18 (2013), 84–94  elib
    6. A. S. Apartsin, I. V. Sidler, “Using the nonclassical Volterra equations of the first kind to model the developing systems”, Autom. Remote Control, 74:6 (2013), 899–910  mathnet  crossref  mathscinet  isi
    7. S. V. Solodusha, “Chislennoe modelirovanie nelineinykh dinamicheskikh sistem s vektornym vkhodom kvadratichnymi polinomami Volterra”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 2012, no. 7, 53–59  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:480
    Full-text PDF :194
    References:66
    First page:4
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025