Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2012, Volume 18, Number 1, Pages 20–33 (Mi timm776)  

Some new classes of inverse coefficient problems in nonlinear mechanics

A. Kh. Khasanov

Department of Mathematics and Computer Science, Izmir University, Izmir, Turkey
References:
Abstract: The present study deals with the following two types of inverse problems governed by nonlinear PDEs, and related to determination of unknown properties of engineering materials based on boundary/surface measured data. The first inverse problem consists of identifying the unknown coefficient $g(\xi^2)$ (plasticity function) in the nonlinear differential equation of torsional creep $-(g(|\nabla u|^2)u_{x_1})_{x_1}-(g(|\nabla u|^2)u_{x_2})_{x_2}= 2\phi$, $x\in\Omega\subset\mathbb R^2$, from the torque (or torsional rigidity) $\mathcal T(\phi)$, given experimentally. The second class of inverse problems is related to identification of the unknown coefficient $g(\xi^2)$ in the nonlinear bending equation $Au\equiv(g(\xi^2(u))(u_{x_1x_1}+u_{x_2x_2}/2))_{x_1x_1}+(g(\xi^2(u))u_{x_1x_2})_{x_1x_2}+(g(\xi^2(u))(u_{x_2x_2}+u_{x_1x_1}/2))_{x_2x_2}=F(x)$, $x\in\Omega\subset\mathbb R^2$. The boundary measured data here is assumed to be the deflections $w_i[\tau_k]:=w(\lambda_i;\tau_k)$, measured during the quasi-static bending process, given by the parameter $\tau_k$, $k=\overline{1,K}$, at some points $\lambda_i=(x_1^{(i)},x_2^{(i)})$, $i=\overline{1,M}$, of a plate. Based on obtained continuity property of the direct problem solution with respect to coefficients, and compactness of the set of admissible coefficients, an existence of quasi-solutions of the considered inverse problems are proved. Some numerical results, useful from the points of view of nonlinear mechanics and computational material science, are demonstrated. Keywords: inverse coefficient problem, material properties, quasisolution method.
Keywords: inverse coefficient problem, material properties, quasisolution method.
Received: 15.07.2011
Bibliographic databases:
Document Type: Article
UDC: 517.988.68
Language: English
Citation: A. Kh. Khasanov, “Some new classes of inverse coefficient problems in nonlinear mechanics”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 1, 2012, 20–33
Citation in format AMSBIB
\Bibitem{Kha12}
\by A.~Kh.~Khasanov
\paper Some new classes of inverse coefficient problems in nonlinear mechanics
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 1
\pages 20--33
\mathnet{http://mi.mathnet.ru/timm776}
\elib{https://elibrary.ru/item.asp?id=17358675}
Linking options:
  • https://www.mathnet.ru/eng/timm776
  • https://www.mathnet.ru/eng/timm/v18/i1/p20
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024