Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2011, Volume 17, Number 4, Pages 293–311 (Mi timm771)  

This article is cited in 25 scientific papers (total in 25 papers)

On one example of representing the ultrafilter space for an algebra of sets

A. G. Chentsovab

a Ural Federal University
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
References:
Abstract: Abstract problems on attainability with constraints of asymptotic nature often involve a situation when the class of sequential approximate sequence solutions (which corresponds conceptually to Vargas approach in control theory problems) is insufficient for the reproduction of effects related to the realization of limit states corresponding to the observance of asymptotic constraints. In this situation, it is necessary to use filters or nets in the original space of solutions. In the case of using filters, as easily seen, it is sufficient to take ultrafilters as analogs of Vargas approximate solutions. However, free ultrafilters, which are the most interesting form this point of view variants of ultrafilters, do not admit a constructive description. The situation can be corrected in some cases of using ultrafilters of an algebra of sets, which turns out to be acceptable in some problems of the above type. In this context, classes of measurable spaces with algebras (or, which is practically the same, with semialgebras) of sets are of interest, as they can be used to describe the set of all free ultrafilters. We analyze an example of this kind and discuss some general constructions related to representations of the space of ultrafilters.
Keywords: algebra of sets, ultrafilter.
Received: 10.01.2011
Bibliographic databases:
Document Type: Article
UDC: 517.972.8
Language: Russian
Citation: A. G. Chentsov, “On one example of representing the ultrafilter space for an algebra of sets”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 4, 2011, 293–311
Citation in format AMSBIB
\Bibitem{Che11}
\by A.~G.~Chentsov
\paper On one example of representing the ultrafilter space for an algebra of sets
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2011
\vol 17
\issue 4
\pages 293--311
\mathnet{http://mi.mathnet.ru/timm771}
\elib{https://elibrary.ru/item.asp?id=17870444}
Linking options:
  • https://www.mathnet.ru/eng/timm771
  • https://www.mathnet.ru/eng/timm/v17/i4/p293
  • This publication is cited in the following 25 articles:
    1. A. G. Chentsov, “Ultrafiltry i maksimalnye stseplennye sistemy”, Tr. IMM UrO RAN, 26, no. 1, 2020, 274–292  mathnet  crossref  elib
    2. Alexander G. Chentsov, “To a question on the supercompactness of ultrafilter spaces”, Ural Math. J., 5:1 (2019), 31–47  mathnet  crossref  mathscinet  zmath
    3. A. G. Chentsov, “Ultrafiltry i maksimalnye stseplennye sistemy: osnovnye sootnosheniya”, Izv. IMI UdGU, 53 (2019), 138–157  mathnet  crossref  elib
    4. A. G. Chentsov, “O superkompaktnosti prostranstva ultrafiltrov s topologiei volmenovskogo tipa”, Izv. IMI UdGU, 54 (2019), 74–101  mathnet  crossref  elib
    5. Chentsov A.G., “Some Properties of Ultrafilters of Widely Understood Measurable Spaces”, Dokl. Math., 99:3 (2019), 255–259  crossref  zmath  isi  scopus
    6. A. G. Chentsov, I. I. Savenkov, Yu. V. Shapar, “Odna zadacha na programmnyi maksimin pri ogranicheniyakh impulsnogo kharaktera”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:1 (2018), 91–110  mathnet  crossref  elib
    7. Chentsov A.G., “Maximal Linked Systems and Ultrafilters in Abstract Attainability Problem”, IFAC PAPERSONLINE, 51:32 (2018), 239–244  crossref  isi  scopus
    8. A. G. Chentsov, “Superrasshirenie kak bitopologicheskoe prostranstvo”, Izv. IMI UdGU, 49 (2017), 55–79  mathnet  crossref  elib
    9. A. G. Chentsov, “Compactifiers in extension constructions for reachability problems with constraints of asymptotic nature”, Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 102–118  mathnet  crossref  mathscinet  isi  elib
    10. A. G. Chentsov, A. P. Baklanov, I. I. Savenkov, “Zadacha o dostizhimosti s ogranicheniyami asimptoticheskogo kharaktera”, Izv. IMI UdGU, 2016, no. 1(47), 54–118  mathnet  mathscinet  zmath  elib
    11. A. G. Chentsov, “Abstraktnaya zadacha o dostizhimosti: “chisto asimptoticheskaya” versiya”, Tr. IMM UrO RAN, 21, no. 2, 2015, 289–305  mathnet  mathscinet  elib
    12. A. G. Chentsov, “K voprosu o realizatsii elementov prityazheniya v abstraktnykh zadachakh o dostizhimosti”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 25:2 (2015), 212–229  mathnet  elib
    13. A. G. Chentsov, A. P. Baklanov, “On an asymptotic analysis problem related to the construction of an attainability domain”, Proc. Steklov Inst. Math., 291 (2015), 279–298  mathnet  crossref  crossref  isi  elib
    14. A. G. Chentsov, “Ultrafiltry izmerimykh prostranstv i ikh primenenie v konstruktsiyakh rasshirenii”, Tr. IMM UrO RAN, 20, no. 1, 2014, 285–304  mathnet  mathscinet  elib
    15. E. G. Pytkeev, A. G. Chentsov, “On the structure of ultrafilters and properties related to convergence in topological spaces”, Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 164–181  mathnet  crossref  mathscinet  isi  elib
    16. A. G. Chentsov, A. P. Baklanov, “On the question of construction of an attraction set under constraints of asymptotic nature”, Proc. Steklov Inst. Math. (Suppl.), 291, suppl. 1 (2015), 40–55  mathnet  crossref  isi  elib
    17. Chentsov A.G. Baklanov A.P., “a Problem Related To Asymptotic Attainability in the Mean”, Dokl. Math., 90:3 (2014), 762–765  crossref  mathscinet  zmath  isi  elib  scopus
    18. A. G. Chentsov, “On the question of representation of ultrafilters in a product of measurable spaces”, Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 65–78  mathnet  crossref  mathscinet  isi  elib
    19. A. G. Chentsov, “Attraction sets in abstract attainability problems: equivalent representations and basic properties”, Russian Math. (Iz. VUZ), 57:11 (2013), 28–44  mathnet  crossref
    20. A. G. Chentsov, “On the question of representation of ultrafilters and their application in extension constructions”, Proc. Steklov Inst. Math. (Suppl.), 287, suppl. 1 (2014), 29–48  mathnet  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:532
    Full-text PDF :132
    References:101
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025