Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2011, Volume 17, Number 4, Pages 88–91 (Mi timm753)  

This article is cited in 1 scientific paper (total in 1 paper)

Finite groups with independent abelian subgroups

A. Kh. Zhurtov, A. A. Tsirkhov

Kabardino-Balkar State University
Full-text PDF (126 kB) Citations (1)
References:
Abstract: We describe finite groups all of whose abelian subgroups are independent. A subgroup $H$ of a group $G$ is called independent if $N_G(U)\leq N_G(H)$ for any nontrivial subgroup $U$ of $H$.
Keywords: finite group, independent subgroup, normalizer embeddability.
Received: 16.06.2011
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: A. Kh. Zhurtov, A. A. Tsirkhov, “Finite groups with independent abelian subgroups”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 4, 2011, 88–91
Citation in format AMSBIB
\Bibitem{ZhuTsi11}
\by A.~Kh.~Zhurtov, A.~A.~Tsirkhov
\paper Finite groups with independent abelian subgroups
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2011
\vol 17
\issue 4
\pages 88--91
\mathnet{http://mi.mathnet.ru/timm753}
\elib{https://elibrary.ru/item.asp?id=17870426}
Linking options:
  • https://www.mathnet.ru/eng/timm753
  • https://www.mathnet.ru/eng/timm/v17/i4/p88
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:336
    Full-text PDF :87
    References:51
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024