|
Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2011, Volume 17, Number 4, Pages 3–18
(Mi timm745)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Chromatic uniqueness of elements of height $\leq3$ in lattices of complete multipartite graphs
V. A. Baranskii, T. A. Sen'chonok Ural Federal University
Abstract:
The purpose of the paper is to prove the following theorem. Let integers $n,t$, and $h$ be such that $0<t<n$ and $h\leq3$. Then, any complete $t$-partite graph with nontrivial parts that has height $h$ in the lattice $NPL(n,t)$ is chromatically unique.
Keywords:
integer partition, lattice, graph, complete multipartite graph, chromatic polynomial, chromatic uniqueness.
Received: 06.05.2011
Citation:
V. A. Baranskii, T. A. Sen'chonok, “Chromatic uniqueness of elements of height $\leq3$ in lattices of complete multipartite graphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 4, 2011, 3–18; Proc. Steklov Inst. Math. (Suppl.), 279, suppl. 1 (2012), 1–16
Linking options:
https://www.mathnet.ru/eng/timm745 https://www.mathnet.ru/eng/timm/v17/i4/p3
|
|