Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2011, Volume 17, Number 4, Pages 3–18 (Mi timm745)  

This article is cited in 5 scientific papers (total in 5 papers)

Chromatic uniqueness of elements of height 3 in lattices of complete multipartite graphs

V. A. Baranskii, T. A. Sen'chonok

Ural Federal University
Full-text PDF (247 kB) Citations (5)
References:
Abstract: The purpose of the paper is to prove the following theorem. Let integers n,t, and h be such that 0<t<n and h3. Then, any complete t-partite graph with nontrivial parts that has height h in the lattice NPL(n,t) is chromatically unique.
Keywords: integer partition, lattice, graph, complete multipartite graph, chromatic polynomial, chromatic uniqueness.
Received: 06.05.2011
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2012, Volume 279, Issue 1, Pages 1–16
DOI: https://doi.org/10.1134/S0081543812090015
Bibliographic databases:
Document Type: Article
UDC: 519.174
Language: Russian
Citation: V. A. Baranskii, T. A. Sen'chonok, “Chromatic uniqueness of elements of height 3 in lattices of complete multipartite graphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 4, 2011, 3–18; Proc. Steklov Inst. Math. (Suppl.), 279, suppl. 1 (2012), 1–16
Citation in format AMSBIB
\Bibitem{BarSen11}
\by V.~A.~Baranskii, T.~A.~Sen'chonok
\paper Chromatic uniqueness of elements of height $\leq3$ in lattices of complete multipartite graphs
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2011
\vol 17
\issue 4
\pages 3--18
\mathnet{http://mi.mathnet.ru/timm745}
\elib{https://elibrary.ru/item.asp?id=17870418}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2012
\vol 279
\issue , suppl. 1
\pages 1--16
\crossref{https://doi.org/10.1134/S0081543812090015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312634700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871348242}
Linking options:
  • https://www.mathnet.ru/eng/timm745
  • https://www.mathnet.ru/eng/timm/v17/i4/p3
  • This publication is cited in the following 5 articles:
    1. Pavel A. Gein, “On chromatic uniqueness of some complete tripartite graphs”, Ural Math. J., 7:1 (2021), 38–65  mathnet  crossref  mathscinet  zmath
    2. Gein P.A., “on Garlands in Chi-Uniquely Colorable Graphs”, Sib. Electron. Math. Rep., 16 (2019), 1703–1715  mathnet  crossref  mathscinet  zmath  isi
    3. P. A. Gein, “O khromaticheskoi opredelyaemosti nekotorykh polnykh trekhdolnykh grafov”, Sib. elektron. matem. izv., 14 (2017), 1492–1504  mathnet  crossref
    4. P. A. Gein, “About chromatic uniqueness of complete tripartite graph K(s,s1,sk), where k1 and sk2”, Sib. Electron. Math. Rep., 13 (2016), 331–337  mathnet  crossref  mathscinet  zmath  isi  scopus
    5. V. A. Baranskii, T. A. Koroleva, T. A. Senchonok, “O reshetke razbienii naturalnogo chisla”, Tr. IMM UrO RAN, 21, no. 3, 2015, 30–36  mathnet  mathscinet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:375
    Full-text PDF :99
    References:60
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025