|
Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2011, Volume 17, Number 3, Pages 271–281
(Mi timm739)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Chromatic uniqueness of elements of height 2 in lattices of complete multipartite graphs
T. A. Senchonok Ural State University
Abstract:
The purpose of the paper is to prove the following theorem. Let integers $n,t$, and $h$ be such that $0<t<n$ and $h\leq2$. Then, any complete $t$-partite graph with nontrivial parts that has height $h$ in the lattice $NPL(n,t)$ is chromatically unique.
Keywords:
integer partition, lattice, graph, complete multipartite graph, chromatic polynomial, chromatic uniqueness.
Received: 08.04.2011
Citation:
T. A. Senchonok, “Chromatic uniqueness of elements of height 2 in lattices of complete multipartite graphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 3, 2011, 271–281
Linking options:
https://www.mathnet.ru/eng/timm739 https://www.mathnet.ru/eng/timm/v17/i3/p271
|
|