Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2011, Volume 17, Number 3, Pages 271–281 (Mi timm739)  

This article is cited in 3 scientific papers (total in 3 papers)

Chromatic uniqueness of elements of height 2 in lattices of complete multipartite graphs

T. A. Senchonok

Ural State University
Full-text PDF (208 kB) Citations (3)
References:
Abstract: The purpose of the paper is to prove the following theorem. Let integers $n,t$, and $h$ be such that $0<t<n$ and $h\leq2$. Then, any complete $t$-partite graph with nontrivial parts that has height $h$ in the lattice $NPL(n,t)$ is chromatically unique.
Keywords: integer partition, lattice, graph, complete multipartite graph, chromatic polynomial, chromatic uniqueness.
Received: 08.04.2011
Bibliographic databases:
Document Type: Article
UDC: 519.174
Language: Russian
Citation: T. A. Senchonok, “Chromatic uniqueness of elements of height 2 in lattices of complete multipartite graphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 3, 2011, 271–281
Citation in format AMSBIB
\Bibitem{Sen11}
\by T.~A.~Senchonok
\paper Chromatic uniqueness of elements of height~2 in lattices of complete multipartite graphs
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2011
\vol 17
\issue 3
\pages 271--281
\mathnet{http://mi.mathnet.ru/timm739}
\elib{https://elibrary.ru/item.asp?id=17870139}
Linking options:
  • https://www.mathnet.ru/eng/timm739
  • https://www.mathnet.ru/eng/timm/v17/i3/p271
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024