Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2011, Volume 17, Number 3, Pages 225–232 (Mi timm734)  

This article is cited in 2 scientific papers (total in 2 papers)

The form of an extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space

N. A. Kuklin

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Full-text PDF (173 kB) Citations (2)
References:
Abstract: We consider an extremal problem for continuous functions that are nonpositive on a closed interval and can be represented by series in Legendre polynomials with nonnegative coefficients. This problem arises from the Delsarte method of finding an upper bound for the kissing number in the three-dimensional Euclidean space. We prove that all extremal functions in this problem are algebraic polynomials and the degree $d$ of each polynomial satisfies the inequalities $27\leq d<1450$.
Keywords: Delsarte method, infinite-dimensional linear programming, Gegenbauer polynomials, kissing numbers.
Received: 01.07.2011
Bibliographic databases:
Document Type: Article
UDC: 517.518.86+519.147
Language: Russian
Citation: N. A. Kuklin, “The form of an extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 3, 2011, 225–232
Citation in format AMSBIB
\Bibitem{Kuk11}
\by N.~A.~Kuklin
\paper The form of an extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2011
\vol 17
\issue 3
\pages 225--232
\mathnet{http://mi.mathnet.ru/timm734}
\elib{https://elibrary.ru/item.asp?id=17870134}
Linking options:
  • https://www.mathnet.ru/eng/timm734
  • https://www.mathnet.ru/eng/timm/v17/i3/p225
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:430
    Full-text PDF :148
    References:82
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024