Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2011, Volume 17, Number 2, Pages 191–208 (Mi timm707)  

This article is cited in 12 scientific papers (total in 12 papers)

On a solution to the Cauchy problem for the Hamilton–Jacobi equation with state constraints

N. N. Subbotina, L. G. Shagalova

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
References:
Abstract: The Cauchy problem for the Hamilton–Jacobi equation, which appears in molecular biology for the Crow–Kimura model of molecular evolution, is considered. The notion of a continuous generalized solution of this problem with state constraints is introduced on the basis of the viscosity (and/or minimax) approach. A construction of the generalized solution of the problem is proposed, which uses the value function in an auxiliary optimal control problem with a given target set. It is shown that the generalized solution in the considered problem is not unique. The research is based on the generalized method of characteristics for the Hamilton–Jacobi equations in the Dirichlet problem.
Keywords: Hamilton–Jacobi equations, method of characteristics, viscosity solutions, minimax solutions, optimal control, value function.
Received: 06.12.2010
Bibliographic databases:
Document Type: Article
UDC: 517.95+517.977
Language: Russian
Citation: N. N. Subbotina, L. G. Shagalova, “On a solution to the Cauchy problem for the Hamilton–Jacobi equation with state constraints”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 2, 2011, 191–208
Citation in format AMSBIB
\Bibitem{SubSha11}
\by N.~N.~Subbotina, L.~G.~Shagalova
\paper On a~solution to the Cauchy problem for the Hamilton--Jacobi equation with state constraints
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2011
\vol 17
\issue 2
\pages 191--208
\mathnet{http://mi.mathnet.ru/timm707}
\elib{https://elibrary.ru/item.asp?id=16352403}
Linking options:
  • https://www.mathnet.ru/eng/timm707
  • https://www.mathnet.ru/eng/timm/v17/i2/p191
  • This publication is cited in the following 12 articles:
    1. Vladimir N. Ushakov, Aleksandr M. Tarasev, “Igrovaya zadacha sblizheniya nelineinoi upravlyaemoi sistemy”, MTIP, 15:2 (2023), 122–139  mathnet
    2. L. G. Shagalova, “Nepreryvnoe obobschennoe reshenie uravneniya Gamiltona – Yakobi s trekhkomponentnym gamiltonianom”, Tr. IMM UrO RAN, 28, no. 1, 2022, 257–268  mathnet  crossref  mathscinet  elib
    3. L. G. Shagalova, “Obobschennoe reshenie uravneniya Gamiltona—Yakobi s trekhkomponentnym gamiltonianom”, Algebra, geometriya, differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 217, VINITI RAN, M., 2022, 63–72  mathnet  crossref
    4. L. G. Shagalova, “Nepreryvnoe obobschennoe reshenie uravneniya Gamiltona—Yakobi s nekoertsitivnym gamiltonianom”, Materialy Vserossiiskoi nauchnoi konferentsii «Differentsialnye uravneniya i ikh prilozheniya», posvyaschennoi 85-letiyu professora M. T. Terekhina. Ryazanskii gosudarstvennyi universitet im. S.A. Esenina, Ryazan, 17–18 maya 2019 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 186, VINITI RAN, M., 2020, 144–151  mathnet  crossref
    5. Subbotina N.N. Shagalova L.G., “The Study of Evolution in the Crow - Kimura Molecular Genetics Model Using Methods of Calculus of Variations”, Proceedings of the 8th International Conference on Mathematical Modeling (ICMM-2017), AIP Conference Proceedings, 1907, ed. Egorov I. Popov S. Vabishchevich P. Antonov M. Lazarev N. Troeva M. Troeva M. Ivanova A. Grigorev Y., Amer Inst Physics, 2017, UNSP 020001  crossref  isi  scopus
    6. N. N. Subbotina, L. G. Shagalova, “On the continuous extension of a generalized solution of the Hamilton-Jacobi equation by characteristics that form a central field of extremals”, Proc. Steklov Inst. Math. (Suppl.), 293, suppl. 1 (2016), 183–198  mathnet  crossref  mathscinet  isi  elib
    7. N. N. Subbotina, L. G. Shagalova, “Konstruktsiya nepreryvnogo obobschennogo resheniya uravneniya Gamiltona–Yakobi s fazovymi ogranicheniyami”, Izv. IMI UdGU, 2015, no. 2(46), 193–201  mathnet  elib
    8. N. N. Subbotina, L. G. Shagalova, “Konstruktsiya nepreryvnogo minimaksnogo/vyazkostnogo resheniya uravneniya Gamiltona–Yakobi–Bellmana s neprodolzhimymi kharakteristikami”, Tr. IMM UrO RAN, 20, no. 4, 2014, 247–257  mathnet  mathscinet  elib
    9. L. G. Shagalova, “On the Solution of the Hamilton–Jacobi Equation Emerging in Molecular Biology”, Autom. Remote Control, 74:8 (2013), 1366–1377  mathnet  crossref  isi  elib  elib
    10. N. N. Subbotina, L. G. Shagalova, “Postroenie obobschennogo resheniya uravneniya Gamiltona–Yakobi v ogranichennoi oblasti”, Izv. IMI UdGU, 2012, no. 1(39), 126–127  mathnet
    11. N. N. Subbotina, L. G. Shagalova, “Construction of a generalized solution to an equation that preserves the Bellman type in a given domain of the state space”, Proc. Steklov Inst. Math., 277 (2012), 234–247  mathnet  crossref  mathscinet  isi  elib  elib
    12. Subbotina N.N., Shagalova L.G., “Primenenie teorii optimalnogo upravleniya dlya resheniya uravnenii gamiltona-yakobi s fazovymi ogranicheniyami”, Vestnik Tambovskogo universiteta. Seriya: Estestvennye i tekhnicheskie nauki, 16:4 (2011), 1185–1187  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:761
    Full-text PDF :314
    References:109
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025