Abstract:
The problem of optimal boundary control by displacement at one end of a string in the presence of a specified force mode at the other end is studied in the sense of a generalized solution of the corresponding mixed initial- boundary value problem from a Sobolev space. The problem of choosing an optimal boundary control from the infinite number of admissible controls is solved. A generalized solution of the mixed initial-boundary value problem is constructed explicitly and the uniqueness of the solution is proved.
Citation:
E. I. Moiseev, A. A. Kholomeeva, “Optimal boundary control by displacement at one end of a string under a given elastic force at the other end”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 2, 2011, 151–158; Proc. Steklov Inst. Math. (Suppl.), 276, suppl. 1 (2012), S153–S160
\Bibitem{MoiKho11}
\by E.~I.~Moiseev, A.~A.~Kholomeeva
\paper Optimal boundary control by displacement at one end of a~string under a~given elastic force at the other end
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2011
\vol 17
\issue 2
\pages 151--158
\mathnet{http://mi.mathnet.ru/timm704}
\elib{https://elibrary.ru/item.asp?id=16352400}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2012
\vol 276
\issue , suppl. 1
\pages S153--S160
\crossref{https://doi.org/10.1134/S0081543812020125}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305482900012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84859339747}
Linking options:
https://www.mathnet.ru/eng/timm704
https://www.mathnet.ru/eng/timm/v17/i2/p151
This publication is cited in the following 8 articles:
V. I. Korzyuk, J. V. Rudzko, “Classical solution to mixed problems from the theory of longitudinal impact on an elastic semi-infinite rod in the case of separation of the impacting body after the collision”, Vescì Akademìì navuk Belarusì. Seryâ fizika-matematyčnyh navuk, 60:2 (2024), 95
M. B. Zvereva, “The Problem of Two-Dimensional String Vibrations with a Nonlinear Condition”, Diff Equat, 59:8 (2023), 1050
Boyadjiev L., Rashedi K., Sini M., “Estimation of the Time-Dependent Body Force Needed to Exert on a Membrane to Reach a Desired State At the Final Time”, Comput. Methods Appl. Math., 19:2, SI (2019), 323–339
N. Yessirkegenov, “On a Problem For Wave Equation With Local Data on the Whole Boundary”, Applications of Mathematics in Engineering and Economics, AMEE'16, AIP Conference Proceedings, 1789, eds. V. Pasheva, N. Popivanov, G. Venkov, Amer. Inst. Physics, 2016, UNSP 040006
Yevgenii M. Donchyk, AIP Conference Proceedings, 1690, 2015, 040023
Moiseev E.I., Kholomeeva A.A., “Solvability of the Mixed Problem for the Wave Equation with a Dynamic Boundary Condition”, Differ. Equ., 48:10 (2012), 1392–1397
Moiseev E.I., Kholomeeva A.A., “Optimal boundary control by a force at one end of a string with a given force mode at the other end”, Differ. Equ., 47:10 (2011), 1508–1513