Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2011, Volume 17, Number 2, Pages 80–87 (Mi timm698)  

Uniqueness of a cycle with discounting that is optimal with respect to the average time profit

A. A. Davydov, T. S. Shutkina

Vladimir State University
References:
Abstract: For cyclic processes modeled by periodic motions of a continuous control system on a circle, we prove the uniqueness of a cycle maximizing the average one-period time profit in the case of discounting provided that the minimum and maximum velocities of the system coincide at some points only and the profit density is a differentiable function with a finite number of critical points. The uniqueness theorem is an analog of Arnolds theorem on the uniqueness of such a cycle in the case when the profit gathered along the cycle is not discounted.
Keywords: average optimization, periodic process, necessary optimality condition, discounting.
Received: 10.10.2010
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2012, Volume 276, Issue 1, Pages S80–S87
DOI: https://doi.org/10.1134/S008154381202006X
Bibliographic databases:
Document Type: Article
UDC: 517.977.1
Language: Russian
Citation: A. A. Davydov, T. S. Shutkina, “Uniqueness of a cycle with discounting that is optimal with respect to the average time profit”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 2, 2011, 80–87; Proc. Steklov Inst. Math. (Suppl.), 276, suppl. 1 (2012), S80–S87
Citation in format AMSBIB
\Bibitem{DavShu11}
\by A.~A.~Davydov, T.~S.~Shutkina
\paper Uniqueness of a cycle with discounting that is optimal with respect to the average time profit
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2011
\vol 17
\issue 2
\pages 80--87
\mathnet{http://mi.mathnet.ru/timm698}
\elib{https://elibrary.ru/item.asp?id=16352394}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2012
\vol 276
\issue , suppl. 1
\pages S80--S87
\crossref{https://doi.org/10.1134/S008154381202006X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305482900006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84859346800}
Linking options:
  • https://www.mathnet.ru/eng/timm698
  • https://www.mathnet.ru/eng/timm/v17/i2/p80
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:512
    Full-text PDF :152
    References:61
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024