Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2011, Volume 17, Number 1, Pages 229–244(Mi timm685)
This article is cited in 6 scientific papers (total in 6 papers)
Dual regularization and Pontryagin's maximum principle in a problem of optimal boundary control for a parabolic equation with nondifferentiable functionals
Abstract:
A problem of optimal boundary control is considered for a`divergent linear parabolic equation. Equality constraints of the problem are given by nondifferentiable functionals. A dual regularization algorithm stable to errors in initial data is constructed for solving the problem. Pontryagins maximum principle plays the key role in this algorithm.
Keywords:
duality, regularization, optimal boundary control, nondifferentiable functional, maximum principle.
Citation:
M. I. Sumin, “Dual regularization and Pontryagin's maximum principle in a problem of optimal boundary control for a parabolic equation with nondifferentiable functionals”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 1, 2011, 229–244; Proc. Steklov Inst. Math. (Suppl.), 275, suppl. 1 (2011), S161–S177
\Bibitem{Sum11}
\by M.~I.~Sumin
\paper Dual regularization and Pontryagin's maximum principle in a~problem of optimal boundary control for a~parabolic equation with nondifferentiable functionals
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2011
\vol 17
\issue 1
\pages 229--244
\mathnet{http://mi.mathnet.ru/timm685}
\elib{https://elibrary.ru/item.asp?id=17869796}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2011
\vol 275
\issue , suppl. 1
\pages S161--S177
\crossref{https://doi.org/10.1134/S0081543811090124}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000297915900012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83055169998}
Linking options:
https://www.mathnet.ru/eng/timm685
https://www.mathnet.ru/eng/timm/v17/i1/p229
This publication is cited in the following 6 articles:
M. I. Sumin, “Printsip Lagranzha i printsip maksimuma Pontryagina v nekorrektnykh zadachakh optimalnogo upravleniya”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXXII», Voronezh, 3–9 maya 2021 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 208, VINITI RAN, M., 2022, 63–78
A. A. Gorshkov, M. I. Sumin, “Regulyarizatsiya printsipa maksimuma Pontryagina v zadache optimalnogo granichnogo upravleniya dlya parabolicheskogo uravneniya s fazovymi ogranicheniyami v lebegovykh prostranstvakh”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 27:2 (2017), 162–177
Mikhail Sumin, IFIP Advances in Information and Communication Technology, 494, System Modeling and Optimization, 2016, 482
A. A. Gorshkov, M. I. Sumin, “Stable Lagrange principle in sequential form for the problem of convex programming in uniformly convex space and its applications”, Russian Math. (Iz. VUZ), 59:1 (2015), 11–23
M. I. Sumin, “Stable sequential convex programming in a Hilbert space and its application for solving unstable problems”, Comput. Math. Math. Phys., 54:1 (2014), 22–44