Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2011, Volume 17, Number 1, Pages 229–244 (Mi timm685)  

This article is cited in 6 scientific papers (total in 6 papers)

Dual regularization and Pontryagin's maximum principle in a problem of optimal boundary control for a parabolic equation with nondifferentiable functionals

M. I. Sumin

N. I. Lobachevski State University of Nizhni Novgorod
Full-text PDF (243 kB) Citations (6)
References:
Abstract: A problem of optimal boundary control is considered for a`divergent linear parabolic equation. Equality constraints of the problem are given by nondifferentiable functionals. A dual regularization algorithm stable to errors in initial data is constructed for solving the problem. Pontryagins maximum principle plays the key role in this algorithm.
Keywords: duality, regularization, optimal boundary control, nondifferentiable functional, maximum principle.
Received: 28.07.2010
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2011, Volume 275, Issue 1, Pages S161–S177
DOI: https://doi.org/10.1134/S0081543811090124
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: M. I. Sumin, “Dual regularization and Pontryagin's maximum principle in a problem of optimal boundary control for a parabolic equation with nondifferentiable functionals”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 1, 2011, 229–244; Proc. Steklov Inst. Math. (Suppl.), 275, suppl. 1 (2011), S161–S177
Citation in format AMSBIB
\Bibitem{Sum11}
\by M.~I.~Sumin
\paper Dual regularization and Pontryagin's maximum principle in a~problem of optimal boundary control for a~parabolic equation with nondifferentiable functionals
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2011
\vol 17
\issue 1
\pages 229--244
\mathnet{http://mi.mathnet.ru/timm685}
\elib{https://elibrary.ru/item.asp?id=17869796}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2011
\vol 275
\issue , suppl. 1
\pages S161--S177
\crossref{https://doi.org/10.1134/S0081543811090124}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000297915900012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83055169998}
Linking options:
  • https://www.mathnet.ru/eng/timm685
  • https://www.mathnet.ru/eng/timm/v17/i1/p229
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025