Abstract:
The paper is devoted to studying the space of nonempty closed convex (but not necessarily compact) sets in $\mathbb R^n$, a dynamical system of translations, and existence theorems for differential inclusions. This space is made complete by equipping it with the Hausdorff–Bebutov metric. The investigation of these issues is important for certain problems of optimal control of asymptotic characteristics of the controlled system. For example, the problem $\dot x=A(t,u)x$, $(u,x)\in\mathbb R^{m+n}$, $\lambda_n(u(\cdot))\to\min$, where $\lambda_n(u(\cdot))$ – is the maximal Lyapunov exponent of the system $\dot x=A(t,u)x$, leads to a differential inclusion with a noncompact right-hand side.
Keywords:
Hausdorff–Bebutov metric, control systems, differential inclusions, dynamical system of translations.
Citation:
E. A. Panasenko, L. I. Rodina, E. L. Tonkov, “The space $\mathrm{clcv}(\mathbb R^n)$ with the Hausdorff–Bebutov metric and differential inclusions”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 1, 2011, 162–177; Proc. Steklov Inst. Math. (Suppl.), 275, suppl. 1 (2011), S121–S136
\Bibitem{PanRodTon11}
\by E.~A.~Panasenko, L.~I.~Rodina, E.~L.~Tonkov
\paper The space $\mathrm{clcv}(\mathbb R^n)$ with the Hausdorff--Bebutov metric and differential inclusions
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2011
\vol 17
\issue 1
\pages 162--177
\mathnet{http://mi.mathnet.ru/timm680}
\elib{https://elibrary.ru/item.asp?id=17869791}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2011
\vol 275
\issue , suppl. 1
\pages S121--S136
\crossref{https://doi.org/10.1134/S0081543811090094}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000297915900009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83055170006}
Linking options:
https://www.mathnet.ru/eng/timm680
https://www.mathnet.ru/eng/timm/v17/i1/p162
This publication is cited in the following 14 articles:
A. A. Tolstonogov, “Space of continuous set-valued mappings with closed unbounded values”, Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), S216–S222
L. I. Danilov, “Shift dynamical systems and measurable selectors of multivalued maps”, Sb. Math., 209:11 (2018), 1611–1643
E. L. Tonkov, “Barbashin and Krasovskii's asymptotic stability theorem in application to control systems on smooth manifolds”, Proc. Steklov Inst. Math. (Suppl.), 291, suppl. 1 (2015), 208–221
L. I. Rodina, A. Kh. Khammadi, “Kharakteristiki mnozhestva dostizhimosti, svyazannye s invariantnostyu upravlyaemoi sistemy na konechnom promezhutke vremeni”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2013, no. 1, 35–48
E. S. Zhukovskiy, E. A. Panasenko, “On fixed points of multi-valued maps in metric spaces and differential inclusions”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2013, no. 2, 12–26
E. L. Tonkov, “Magistralnye protsessy upravlyaemykh sistem na gladkikh mnogoobraziyakh”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2013, no. 4, 132–145
Zhukovskiy E.S., Panasenko E.A., “On Multi-Valued Maps with Images in the Space of Closed Subsets of a Metric Space”, Fixed Point Theory Appl., 2013, 10
P. D. Lebedev, V. N. Ushakov, “Ob odnom variante metriki dlya neogranichennykh vypuklykh mnozhestv”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 5:1 (2013), 40–49
E. S. Zhukovskii, E. A. Panasenko, “Ob odnoi metrike v prostranstve nepustykh zamknutykh podmnozhestv prostranstva $\mathbb R^n$”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2012, no. 1, 15–25
E. A. Panasenko, “Dinamicheskaya sistema sdvigov v prostranstve mnogoznachnykh funktsii s zamknutymi obrazami”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2012, no. 2, 28–33
L. I. Rodina, “Statisticheskie kharakteristiki mnozhestva dostizhimosti upravlyaemoi sistemy”, Izv. IMI UdGU, 2012, no. 1(39), 111–113
L. I. Rodina, “Invariantnye i statisticheski slabo invariantnye mnozhestva upravlyaemykh sistem”, Izv. IMI UdGU, 2012, no. 2(40), 3–164
L. I. Rodina, “The space $\mathrm{clcv}(\mathbb R^n)$ with the Hausdorff–Bebutov metric and statistically invariant sets of control systems”, Proc. Steklov Inst. Math., 278 (2012), 208–217
L. I. Rodina, E. L. Tonkov, “O mnozhestve dostizhimosti upravlyaemoi sistemy bez predpolozheniya kompaktnosti geometricheskikh ogranichenii na dopustimye upravleniya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2012, no. 4, 68–79