Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2011, Volume 17, Number 1, Pages 162–177 (Mi timm680)  

This article is cited in 14 scientific papers (total in 14 papers)

The space $\mathrm{clcv}(\mathbb R^n)$ with the Hausdorff–Bebutov metric and differential inclusions

E. A. Panasenkoa, L. I. Rodinab, E. L. Tonkovb

a Tambov State University
b Udmurt State University
References:
Abstract: The paper is devoted to studying the space of nonempty closed convex (but not necessarily compact) sets in $\mathbb R^n$, a dynamical system of translations, and existence theorems for differential inclusions. This space is made complete by equipping it with the Hausdorff–Bebutov metric. The investigation of these issues is important for certain problems of optimal control of asymptotic characteristics of the controlled system. For example, the problem $\dot x=A(t,u)x$, $(u,x)\in\mathbb R^{m+n}$, $\lambda_n(u(\cdot))\to\min$, where $\lambda_n(u(\cdot))$ – is the maximal Lyapunov exponent of the system $\dot x=A(t,u)x$, leads to a differential inclusion with a noncompact right-hand side.
Keywords: Hausdorff–Bebutov metric, control systems, differential inclusions, dynamical system of translations.
Received: 31.07.2010
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2011, Volume 275, Issue 1, Pages S121–S136
DOI: https://doi.org/10.1134/S0081543811090094
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: E. A. Panasenko, L. I. Rodina, E. L. Tonkov, “The space $\mathrm{clcv}(\mathbb R^n)$ with the Hausdorff–Bebutov metric and differential inclusions”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 1, 2011, 162–177; Proc. Steklov Inst. Math. (Suppl.), 275, suppl. 1 (2011), S121–S136
Citation in format AMSBIB
\Bibitem{PanRodTon11}
\by E.~A.~Panasenko, L.~I.~Rodina, E.~L.~Tonkov
\paper The space $\mathrm{clcv}(\mathbb R^n)$ with the Hausdorff--Bebutov metric and differential inclusions
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2011
\vol 17
\issue 1
\pages 162--177
\mathnet{http://mi.mathnet.ru/timm680}
\elib{https://elibrary.ru/item.asp?id=17869791}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2011
\vol 275
\issue , suppl. 1
\pages S121--S136
\crossref{https://doi.org/10.1134/S0081543811090094}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000297915900009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83055170006}
Linking options:
  • https://www.mathnet.ru/eng/timm680
  • https://www.mathnet.ru/eng/timm/v17/i1/p162
  • This publication is cited in the following 14 articles:
    1. A. A. Tolstonogov, “Space of continuous set-valued mappings with closed unbounded values”, Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), S216–S222  mathnet  crossref  crossref  isi  elib
    2. L. I. Danilov, “Shift dynamical systems and measurable selectors of multivalued maps”, Sb. Math., 209:11 (2018), 1611–1643  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. E. L. Tonkov, “Barbashin and Krasovskii's asymptotic stability theorem in application to control systems on smooth manifolds”, Proc. Steklov Inst. Math. (Suppl.), 291, suppl. 1 (2015), 208–221  mathnet  crossref  mathscinet  isi  elib
    4. L. I. Rodina, A. Kh. Khammadi, “Kharakteristiki mnozhestva dostizhimosti, svyazannye s invariantnostyu upravlyaemoi sistemy na konechnom promezhutke vremeni”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2013, no. 1, 35–48  mathnet
    5. E. S. Zhukovskiy, E. A. Panasenko, “On fixed points of multi-valued maps in metric spaces and differential inclusions”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2013, no. 2, 12–26  mathnet
    6. E. L. Tonkov, “Magistralnye protsessy upravlyaemykh sistem na gladkikh mnogoobraziyakh”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2013, no. 4, 132–145  mathnet
    7. Zhukovskiy E.S., Panasenko E.A., “On Multi-Valued Maps with Images in the Space of Closed Subsets of a Metric Space”, Fixed Point Theory Appl., 2013, 10  crossref  mathscinet  zmath  isi  elib  scopus
    8. P. D. Lebedev, V. N. Ushakov, “Ob odnom variante metriki dlya neogranichennykh vypuklykh mnozhestv”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 5:1 (2013), 40–49  mathnet
    9. E. S. Zhukovskii, E. A. Panasenko, “Ob odnoi metrike v prostranstve nepustykh zamknutykh podmnozhestv prostranstva $\mathbb R^n$”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2012, no. 1, 15–25  mathnet
    10. E. A. Panasenko, “Dinamicheskaya sistema sdvigov v prostranstve mnogoznachnykh funktsii s zamknutymi obrazami”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2012, no. 2, 28–33  mathnet
    11. L. I. Rodina, “Statisticheskie kharakteristiki mnozhestva dostizhimosti upravlyaemoi sistemy”, Izv. IMI UdGU, 2012, no. 1(39), 111–113  mathnet
    12. L. I. Rodina, “Invariantnye i statisticheski slabo invariantnye mnozhestva upravlyaemykh sistem”, Izv. IMI UdGU, 2012, no. 2(40), 3–164  mathnet
    13. L. I. Rodina, “The space $\mathrm{clcv}(\mathbb R^n)$ with the Hausdorff–Bebutov metric and statistically invariant sets of control systems”, Proc. Steklov Inst. Math., 278 (2012), 208–217  mathnet  crossref  mathscinet  isi  elib  elib
    14. L. I. Rodina, E. L. Tonkov, “O mnozhestve dostizhimosti upravlyaemoi sistemy bez predpolozheniya kompaktnosti geometricheskikh ogranichenii na dopustimye upravleniya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2012, no. 4, 68–79  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:598
    Full-text PDF :167
    References:91
    First page:18
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025