Abstract:
The paper is devoted to studying the properties of optimal controls for two variants of the Richardson arms race model known in political science. The main investigation technique is Pontryagins maximum principle.
Citation:
M. S. Nikol'skii, “On controllable variants of the Richardson model in political science”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 1, 2011, 121–128; Proc. Steklov Inst. Math. (Suppl.), 275, suppl. 1 (2011), S78–S85
\Bibitem{Nik11}
\by M.~S.~Nikol'skii
\paper On controllable variants of the Richardson model in political science
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2011
\vol 17
\issue 1
\pages 121--128
\mathnet{http://mi.mathnet.ru/timm678}
\elib{https://elibrary.ru/item.asp?id=17869789}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2011
\vol 275
\issue , suppl. 1
\pages S78--S85
\crossref{https://doi.org/10.1134/S0081543811090070}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000297915900007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83055196955}
Linking options:
https://www.mathnet.ru/eng/timm678
https://www.mathnet.ru/eng/timm/v17/i1/p121
This publication is cited in the following 3 articles:
Kostousova E.K., “On Polyhedral Control Synthesis For Dynamical Discrete-Time Systems Under Uncertainties and State Constraints”, Discret. Contin. Dyn. Syst., 38:12, SI (2018), 6149–6162
Kostousova E.K., “On Feedback Target Control For Uncertain Discrete-Time Bilinear Systems With State Constraints Through Polyhedral Technique”, Application of Mathematics in Technical and Natural Sciences, AIP Conference Proceedings, 1895, ed. Todorov M., Amer Inst Physics, 2017, UNSP 110004-1
E. K. Kostousova, “O poliedralnykh otsenkakh mnozhestv dostizhimosti differentsialnykh sistem s bilineinoi neopredelennostyu”, Tr. IMM UrO RAN, 18, no. 4, 2012, 195–210