Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2011, Volume 17, Number 1, Pages 93–98 (Mi timm675)  

On autotopies of quasigroups

M. E. Eliseev

Novosibirsk State Technical University
References:
Abstract: We consider the scheme of a quasigroup and prove in Theorem 1 that it is an invariant of the isotopy class of the quasigroup. The scheme of a quasigroup makes it possible in some cases to easily differentiate between nonisotopic quasigroups. We introduce the notions of autotopy of the first kind and of action of an autotopy on elements of a quasigroup. The nonexistence of a quasigroup of order $(4m+2)$ with a transitively acting group of autotopies of the first kind is proved (Theorem 3).
Keywords: quasigroup, Latin square, automorphism, autotopy.
Received: 15.10.2010
Bibliographic databases:
Document Type: Article
UDC: 512.54
Language: Russian
Citation: M. E. Eliseev, “On autotopies of quasigroups”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 1, 2011, 93–98
Citation in format AMSBIB
\Bibitem{Eli11}
\by M.~E.~Eliseev
\paper On autotopies of quasigroups
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2011
\vol 17
\issue 1
\pages 93--98
\mathnet{http://mi.mathnet.ru/timm675}
\elib{https://elibrary.ru/item.asp?id=17869786}
Linking options:
  • https://www.mathnet.ru/eng/timm675
  • https://www.mathnet.ru/eng/timm/v17/i1/p93
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:213
    Full-text PDF :110
    References:40
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024