Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2011, Volume 17, Number 1, Pages 53–59 (Mi timm671)  

This article is cited in 1 scientific paper (total in 1 paper)

Numerical algorithm for solving a nonstationary problem of optimal control

N. L. Grigorenko, D. V. Kamzolkin, L. N. Luk'yanova

M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
Full-text PDF (155 kB) Citations (1)
References:
Abstract: The problem of optimal control is considered for a nonstationary dynamic system with unfixed termination time and terminal functional. An algorithm based on Pontryagins maximum principle is used to construct an optimal control that maximizes the performance functional. The results of calculating the control and values of the functional for test parameters of the model are presented.
Keywords: control system, optimal control.
Received: 01.09.2010
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2011, Volume 275, Issue 1, Pages S49–S56
DOI: https://doi.org/10.1134/S0081543811090045
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: N. L. Grigorenko, D. V. Kamzolkin, L. N. Luk'yanova, “Numerical algorithm for solving a nonstationary problem of optimal control”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 1, 2011, 53–59; Proc. Steklov Inst. Math. (Suppl.), 275, suppl. 1 (2011), S49–S56
Citation in format AMSBIB
\Bibitem{GriKamLuk11}
\by N.~L.~Grigorenko, D.~V.~Kamzolkin, L.~N.~Luk'yanova
\paper Numerical algorithm for solving a~nonstationary problem of optimal control
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2011
\vol 17
\issue 1
\pages 53--59
\mathnet{http://mi.mathnet.ru/timm671}
\elib{https://elibrary.ru/item.asp?id=17869782}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2011
\vol 275
\issue , suppl. 1
\pages S49--S56
\crossref{https://doi.org/10.1134/S0081543811090045}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000297915900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83055196957}
Linking options:
  • https://www.mathnet.ru/eng/timm671
  • https://www.mathnet.ru/eng/timm/v17/i1/p53
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:499
    Full-text PDF :153
    References:75
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024