Abstract:
We show that the problem on the rate of approximation of functions in Lipschitz norms is reduced to estimating approximations in C. Approximations in Lipschitz norms by Vallée Poussin sums are considered as an example.
Citation:
S. A. Telyakovskii, “On the rate of approximation of functions in Lipschitz norms”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 4, 2010, 297–299; Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S160–S162
\Bibitem{Tel10}
\by S.~A.~Telyakovskii
\paper On the rate of approximation of functions in Lipschitz norms
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2010
\vol 16
\issue 4
\pages 297--299
\mathnet{http://mi.mathnet.ru/timm663}
\elib{https://elibrary.ru/item.asp?id=15318510}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2011
\vol 273
\issue , suppl. 1
\pages S160--S162
\crossref{https://doi.org/10.1134/S0081543811050166}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305481300016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959235548}
Linking options:
https://www.mathnet.ru/eng/timm663
https://www.mathnet.ru/eng/timm/v16/i4/p297
This publication is cited in the following 4 articles:
Włodzimierz Łenski, Bogdan Szal, Ram N. Mohapatra, “Seminormed approximation of functions by operators based on their Fourier series”, Bulletin des Sciences Mathématiques, 193 (2024), 103443
S. S. Volosivets, “Riesz–Zygmund means and trigonometric approximation in Morrey spaces”, J Anal, 2024
S. Volosivets, “Approximation in Variable Exponent Spaces and Growth of Norms of Trigonometric Polynomials”, Anal Math, 49:1 (2023), 307
M. P. Golava, “Priblizhenie funktsii v obobschennykh gelderovykh prostranstvakh i ikh modifikatsiyakh”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2018, no. 3(23), 27–35