Abstract:
The Jackson–Stechkin inequality is considered, which estimates the value of the best uniform approximation of a continuous function by algebraic polynomials on a closed interval in terms of values of the modulus of continuity of the approximated function. A variant of the inequality with second-order modulus of continuity and explicit specification of the argument of the modulus of continuity and the constant is proved.
Keywords:
Jackson inequality, approximation by algebraic polynomials, modulus of continuity.
\Bibitem{Mir10}
\by A.~V.~Mironenko
\paper On the Jackson--Stechkin inequality for algebraic polynomials
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2010
\vol 16
\issue 4
\pages 246--253
\mathnet{http://mi.mathnet.ru/timm658}
\elib{https://elibrary.ru/item.asp?id=15318505}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2011
\vol 273
\issue , suppl. 1
\pages S116--S123
\crossref{https://doi.org/10.1134/S0081543811050129}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305481300012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959233130}
Linking options:
https://www.mathnet.ru/eng/timm658
https://www.mathnet.ru/eng/timm/v16/i4/p246
This publication is cited in the following 2 articles:
A. G. Babenko, Yu. V. Kryakin, “On constants in the Jackson–Stechkin theorem in the case of approximation by algebraic polynomials”, Proc. Steklov Inst. Math., 303 (2018), 18–30
Gocheva-Ilieva S.G., Feschiev I.H., “New Recursive Representations for the Favard Constants with Application to Multiple Singular Integrals and Summation of Series”, Abstract Appl. Anal., 2013, 523618