Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2010, Volume 16, Number 4, Pages 166–179 (Mi timm651)  

This article is cited in 5 scientific papers (total in 5 papers)

Estimates for sums of moduli of blocks from trigonometric Fourier series

V. P. Zastavnyi

Donetsk National University, Ukraine
Full-text PDF (238 kB) Citations (5)
References:
Abstract: We consider the following two problems. Problem 1: what conditions on a sequence of finite subsets $A_k\subset\mathbb Z$ and a sequence of functions $\lambda_k\colon A_k\to\mathbb C$ provide the existence of a number $C$ such that any function $f\in L_1$ satisfies the inequality $\|U_{\mathcal A,\Lambda}(f)\|_p\le C\|f\|_1,$and what is the exact constant in this inequality? Here, $U_{\mathcal A,\Lambda}(f)(x)=\sum_{k=1}^\infty\big|\sum_{m\in A_k}\lambda_k(m)c_m(f)e^{imx}\big|$, and $c_m(f)$ are Fourier coefficients of the function $f\in L_1$. Problem 2: what conditions on a sequence of finite subsets $A_k\subset\mathbb Z$ guarantee that the a function $\sum_{k=1}^\infty\big|\sum_{m\in A_k}c_m(h)e^{imx}\big|$ belongs to $L_p$ for every function $h$ of bounded variation?
Keywords: trigonometric series; Hardy-Littlewood theorems.
Received: 22.09.2010
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2011, Volume 273, Issue 1, Pages S190–S204
DOI: https://doi.org/10.1134/S0081543811050208
Bibliographic databases:
Document Type: Article
UDC: 517.518
Language: Russian
Citation: V. P. Zastavnyi, “Estimates for sums of moduli of blocks from trigonometric Fourier series”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 4, 2010, 166–179; Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S190–S204
Citation in format AMSBIB
\Bibitem{Zas10}
\by V.~P.~Zastavnyi
\paper Estimates for sums of moduli of blocks from trigonometric Fourier series
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2010
\vol 16
\issue 4
\pages 166--179
\mathnet{http://mi.mathnet.ru/timm651}
\elib{https://elibrary.ru/item.asp?id=15318498}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2011
\vol 273
\issue , suppl. 1
\pages S190--S204
\crossref{https://doi.org/10.1134/S0081543811050208}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959274964}
Linking options:
  • https://www.mathnet.ru/eng/timm651
  • https://www.mathnet.ru/eng/timm/v16/i4/p166
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:526
    Full-text PDF :159
    References:82
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024