Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2010, Volume 16, Number 4, Pages 128–143 (Mi timm648)  

This article is cited in 2 scientific papers (total in 3 papers)

The class of solenoidal planar-helical vector fields

V. P. Vereshchagina, Yu. N. Subbotinb, N. I. Chernykhb

a Russian State Professional Pedagogical University
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Full-text PDF (231 kB) Citations (3)
References:
Abstract: The class of solenoidal vector fields whose lines lie in planes parallel to $R^2$ is constructed by the method of mappings. This class exhausts the set of all smooth planar-helical solutions of Gromeka's problem in some domain $D\subset R^3$. In the case of domains $D$ with cylindrical boundaries whose generators are orthogonal to $R^2$, it is shown that the choice of a concrete solution from the constructed class is reduced to the Dirichlet problem with respect to two functions that are harmonically conjugate in $D^2=D\cap R^2$; i.e., Gromeka's nonlinear problem is reduced to linear boundary value problems. As an example, a concrete solution of the problem for an axially symmetric layer is presented. The solution is based on solving Dirichlet problems in the form of series uniformly convergent in $\overline D^2$ in terms of wavelet systems that form bases of various spaces of functions harmonic in $D^2$.
Keywords: scalar fields, vector fields, tensor fields, curl, wavelets, Gromeka's problem.
Received: 22.01.2010
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2011, Volume 273, Issue 1, Pages S171–S187
DOI: https://doi.org/10.1134/S008154381105018X
Bibliographic databases:
Document Type: Article
UDC: 514.7
Language: Russian
Citation: V. P. Vereshchagin, Yu. N. Subbotin, N. I. Chernykh, “The class of solenoidal planar-helical vector fields”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 4, 2010, 128–143; Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S171–S187
Citation in format AMSBIB
\Bibitem{VerSubChe10}
\by V.~P.~Vereshchagin, Yu.~N.~Subbotin, N.~I.~Chernykh
\paper The class of solenoidal planar-helical vector fields
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2010
\vol 16
\issue 4
\pages 128--143
\mathnet{http://mi.mathnet.ru/timm648}
\elib{https://elibrary.ru/item.asp?id=15318495}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2011
\vol 273
\issue , suppl. 1
\pages S171--S187
\crossref{https://doi.org/10.1134/S008154381105018X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305481300018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959273501}
Linking options:
  • https://www.mathnet.ru/eng/timm648
  • https://www.mathnet.ru/eng/timm/v16/i4/p128
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:373
    Full-text PDF :94
    References:77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024