Abstract:
A linear combination Πq,α=cos(απ/2)P+sin(απ/2)QΠq,α=cos(απ/2)P+sin(απ/2)Q of the Poisson kernel P(t)=1/2+qcost+q2cos2t+…P(t)=1/2+qcost+q2cos2t+… and its conjugate kernel Q(t)=qsint+q2sin2t+…Q(t)=qsint+q2sin2t+… is considered for α∈R and |q|<1. A new explicit formula is found for the value En−1(Πq,α) of the best approximation in the space L=L2π of the function Πq,α by the subspace of trigonometric polynomials of order at most n−1. Namely, it is shown that
En−1(Πq,α)=|q|n(1−q2)1−q4n‖cos(nt−απ/2)−q2ncos(nt+απ/2)1+q2−2qcost‖L.
Besides, the value En−1(Πq,α) is represented as a rapidly converging series.
Citation:
N. A. Baraboshkina, “L-approximation of a linear combination of the Poisson kernel and its conjugate kernel by trigonometric polynomials”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 4, 2010, 79–86; Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S59–S67
\Bibitem{Bar10}
\by N.~A.~Baraboshkina
\paper $L$-approximation of a~linear combination of the Poisson kernel and its conjugate kernel by trigonometric polynomials
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2010
\vol 16
\issue 4
\pages 79--86
\mathnet{http://mi.mathnet.ru/timm643}
\elib{https://elibrary.ru/item.asp?id=15318490}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2011
\vol 273
\issue , suppl. 1
\pages S59--S67
\crossref{https://doi.org/10.1134/S0081543811050063}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305481300006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959272356}
Linking options:
https://www.mathnet.ru/eng/timm643
https://www.mathnet.ru/eng/timm/v16/i4/p79
This publication is cited in the following 4 articles:
Anatolii S. Serdyuk, Igor V. Sokolenko, “Asymptotic Estimates for the Best Uniform Approximations of Classes of Convolution of Periodic Functions of High Smoothness”, J Math Sci, 252:4 (2021), 526
Anatolii Serdyuk, Igor Sokolenko, “Asymptotic estimates for the best uniform approximations of classes of convolution of periodic functions of high smoothness”, UMB, 17:3 (2020), 396
A. G. Babenko, T. Z. Naum, “One-sided integral approximations of the generalized Poisson kernel by trigonometric polynomials”, Proc. Steklov Inst. Math. (Suppl.), 300, suppl. 1 (2018), 38–48
N. A. Baraboshkina, “Priblizhenie garmonicheskikh funktsii algebraicheskimi mnogochlenami na okruzhnosti radiusa menshe edinitsy s nalichiem ogranichenii na edinichnoi okruzhnosti”, Tr. IMM UrO RAN, 19, no. 2, 2013, 71–78