Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2010, Volume 16, Number 4, Pages 79–86 (Mi timm643)  

This article is cited in 4 scientific papers (total in 4 papers)

$L$-approximation of a linear combination of the Poisson kernel and its conjugate kernel by trigonometric polynomials

N. A. Baraboshkina

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Full-text PDF (161 kB) Citations (4)
References:
Abstract: A linear combination $\Pi_{q,\alpha}=\cos(\alpha\pi/2)P+\sin(\alpha\pi/2)Q$ of the Poisson kernel $P(t)=1/2+q\cos t+q^2\cos2t+\dots$ and its conjugate kernel $Q(t)=q\sin t+q^2\sin2t+\dots$ is considered for $\alpha\in\mathbb R$ and $|q|<1$. A new explicit formula is found for the value $E_{n-1}(\Pi_{q,\alpha})$ of the best approximation in the space $L=L_{2\pi}$ of the function $\Pi_{q,\alpha}$ by the subspace of trigonometric polynomials of order at most $n-1$. Namely, it is shown that
$$ E_{n-1}(\Pi_{q,\alpha})=\frac{|q|^n(1-q^2)}{1-q^{4n}}\left\|\frac{\cos(nt-\alpha\pi/2)-q^{2n}\cos(nt+\alpha\pi/2)}{1+q^2-2q\cos t}\right\|_L. $$
Besides, the value $E_{n-1}(\Pi_{q,\alpha})$ is represented as a rapidly converging series.
Keywords: trigonometric approximation, Poisson kernel.
Received: 20.05.2010
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2011, Volume 273, Issue 1, Pages S59–S67
DOI: https://doi.org/10.1134/S0081543811050063
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: N. A. Baraboshkina, “$L$-approximation of a linear combination of the Poisson kernel and its conjugate kernel by trigonometric polynomials”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 4, 2010, 79–86; Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S59–S67
Citation in format AMSBIB
\Bibitem{Bar10}
\by N.~A.~Baraboshkina
\paper $L$-approximation of a~linear combination of the Poisson kernel and its conjugate kernel by trigonometric polynomials
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2010
\vol 16
\issue 4
\pages 79--86
\mathnet{http://mi.mathnet.ru/timm643}
\elib{https://elibrary.ru/item.asp?id=15318490}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2011
\vol 273
\issue , suppl. 1
\pages S59--S67
\crossref{https://doi.org/10.1134/S0081543811050063}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305481300006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959272356}
Linking options:
  • https://www.mathnet.ru/eng/timm643
  • https://www.mathnet.ru/eng/timm/v16/i4/p79
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024