Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2010, Volume 16, Number 4, Pages 79–86 (Mi timm643)  

This article is cited in 4 scientific papers (total in 4 papers)

LL-approximation of a linear combination of the Poisson kernel and its conjugate kernel by trigonometric polynomials

N. A. Baraboshkina

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Full-text PDF (161 kB) Citations (4)
References:
Abstract: A linear combination Πq,α=cos(απ/2)P+sin(απ/2)QΠq,α=cos(απ/2)P+sin(απ/2)Q of the Poisson kernel P(t)=1/2+qcost+q2cos2t+P(t)=1/2+qcost+q2cos2t+ and its conjugate kernel Q(t)=qsint+q2sin2t+Q(t)=qsint+q2sin2t+ is considered for αR and |q|<1. A new explicit formula is found for the value En1(Πq,α) of the best approximation in the space L=L2π of the function Πq,α by the subspace of trigonometric polynomials of order at most n1. Namely, it is shown that
En1(Πq,α)=|q|n(1q2)1q4ncos(ntαπ/2)q2ncos(nt+απ/2)1+q22qcostL.
Besides, the value En1(Πq,α) is represented as a rapidly converging series.
Keywords: trigonometric approximation, Poisson kernel.
Received: 20.05.2010
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2011, Volume 273, Issue 1, Pages S59–S67
DOI: https://doi.org/10.1134/S0081543811050063
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: N. A. Baraboshkina, “L-approximation of a linear combination of the Poisson kernel and its conjugate kernel by trigonometric polynomials”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 4, 2010, 79–86; Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S59–S67
Citation in format AMSBIB
\Bibitem{Bar10}
\by N.~A.~Baraboshkina
\paper $L$-approximation of a~linear combination of the Poisson kernel and its conjugate kernel by trigonometric polynomials
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2010
\vol 16
\issue 4
\pages 79--86
\mathnet{http://mi.mathnet.ru/timm643}
\elib{https://elibrary.ru/item.asp?id=15318490}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2011
\vol 273
\issue , suppl. 1
\pages S59--S67
\crossref{https://doi.org/10.1134/S0081543811050063}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305481300006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959272356}
Linking options:
  • https://www.mathnet.ru/eng/timm643
  • https://www.mathnet.ru/eng/timm/v16/i4/p79
  • This publication is cited in the following 4 articles:
    1. Anatolii S. Serdyuk, Igor V. Sokolenko, “Asymptotic Estimates for the Best Uniform Approximations of Classes of Convolution of Periodic Functions of High Smoothness”, J Math Sci, 252:4 (2021), 526  crossref
    2. Anatolii Serdyuk, Igor Sokolenko, “Asymptotic estimates for the best uniform approximations of classes of convolution of periodic functions of high smoothness”, UMB, 17:3 (2020), 396  crossref
    3. A. G. Babenko, T. Z. Naum, “One-sided integral approximations of the generalized Poisson kernel by trigonometric polynomials”, Proc. Steklov Inst. Math. (Suppl.), 300, suppl. 1 (2018), 38–48  mathnet  crossref  crossref  mathscinet  isi  elib
    4. N. A. Baraboshkina, “Priblizhenie garmonicheskikh funktsii algebraicheskimi mnogochlenami na okruzhnosti radiusa menshe edinitsy s nalichiem ogranichenii na edinichnoi okruzhnosti”, Tr. IMM UrO RAN, 19, no. 2, 2013, 71–78  mathnet  mathscinet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:435
    Full-text PDF :137
    References:84
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025