|
Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2010, Volume 16, Number 4, Pages 31–37
(Mi timm638)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
On the growth rate of arbitrary sequences of double rectangular Fourier sums
N. Yu. Antonov Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Abstract:
The theorem is proved that an arbitrary sequence $\{S_{m_k,n_k}(f,x,y)\} _{k=1}^\infty$ of double rectangular Fourier sums of any function from the class $L(\ln^+L)^2([0,2\pi)^2)$ satisfies almost everywhere the relation $S_{m_k,n_k}(f,x,y)=o(\ln k)$.
Keywords:
multiple trigonometric Fourier series, almost everywhere convergence.
Received: 30.11.2009
Citation:
N. Yu. Antonov, “On the growth rate of arbitrary sequences of double rectangular Fourier sums”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 4, 2010, 31–37; Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S14–S20
Linking options:
https://www.mathnet.ru/eng/timm638 https://www.mathnet.ru/eng/timm/v16/i4/p31
|
Statistics & downloads: |
Abstract page: | 393 | Full-text PDF : | 112 | References: | 58 | First page: | 3 |
|