Abstract:
S. B. Stechkin made a considerable contribution to an important aspect of approximation theory for periodic functions concerned with direct and inverse theorems. We present the history of development of this research area and pose new problems.
Keywords:
best approximation, module of continuity, Jackson–Stechkin inequality, inverse inequality.
Citation:
V. I. Ivanov, “Direct and inverse theorems in approximation theory for periodic functions in S. B. Stechkins papers and the development of these theorems”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 4, 2010, 5–17; Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S1–S13
\Bibitem{Iva10}
\by V.~I.~Ivanov
\paper Direct and inverse theorems in approximation theory for periodic functions in S.\,B.~Stechkins papers and the development of these theorems
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2010
\vol 16
\issue 4
\pages 5--17
\mathnet{http://mi.mathnet.ru/timm636}
\elib{https://elibrary.ru/item.asp?id=15318483}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2011
\vol 273
\issue , suppl. 1
\pages S1--S13
\crossref{https://doi.org/10.1134/S0081543811050014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959197465}
Linking options:
https://www.mathnet.ru/eng/timm636
https://www.mathnet.ru/eng/timm/v16/i4/p5
This publication is cited in the following 8 articles:
G. A. Akishev, “Neravenstva dlya nailuchshego priblizheniya «uglom» i modulya gladkosti funktsii v prostranstve Lorentsa”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody kraevykh zadach. Pontryaginskie chteniya—XXXIV», Voronezh, 3-9 maya 2023 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 230, VINITI RAN, M., 2023, 8–24
M. Sh. Shabozov, E. U. Kadamshoev, “Sharp Inequalities between the Best Root-Mean-Square Approximations of Analytic Functions in the Disk and Some Smoothness Characteristics in the Bergman Space”, Math. Notes, 110:2 (2021), 248–260
Yurii Kolomoitsev, Sergey Tikhonov, “Properties of moduli of smoothness inLp(Rd)”, Journal of Approximation Theory, 257 (2020), 105423
Gorbachev D.V., Ivanov V.I., Tikhonov S.Yu., “Positive l-P-Bounded Dunkl-Type Generalized Translation Operator and Its Applications”, Constr. Approx., 49:3 (2019), 555–605
D. V. Gorbachev, V. I. Ivanov, “Fractional Smoothness in
$L^p$
with Dunkl Weight
and Its Applications”, Math. Notes, 106:4 (2019), 537–561
Pietsch A., “Traces on Operator Ideals and Related Linear Forms on Sequence Ideals (Part Iv)”, Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics: the Albrecht Bottcher Anniversary Volume, Operator Theory Advances and Applications, 259, eds. Bini D., Ehrhardt T., Karlovich A., Spitkovsky I., Springer International Publishing Ag, 2017, 593–619
R. A. Veprintsev, “Otsenka snizu konstanty Dzheksona v prostranstvakh $L_p$ na sfere s vesom Danklya, svyazannym s gruppoi diedra”, Chebyshevskii sb., 16:3 (2015), 95–123
R. M. Trigub, “The exact order of approximation to periodic functions by Bernstein-Stechkin polynomials”, Sb. Math., 204:12 (2013), 1819–1838