Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2010, Volume 16, Number 5, Pages 253–260 (Mi timm628)  

On the computation of the effective Hamitonian in the non convex case

M. Falconea, M. Rorrob

a SAPIENZA — Universitá di Roma
b CASPUR, Rome
References:
Abstract: In this paper we propose a method to compute the effective Hamiltonian, a classical problem arising e.g. in weak KAM theory and homogenization. We will focus our attention on the case of non convex Hamiltonians related to differential games where the effective Hamiltonian gives information regarding the ergodicity of the game. The method is based on solution of the Hamilton–Jacobi–Isaacs equation and gives an approximation of the effective Hamiltonian via a coupling between a dynamic programming scheme for pursuit-evasion games and the techniques adapted to solve the cell problem in the convex case. Some tests will be presented in the last section.
Keywords: Hamilton–Jacobi equations, nonconvex Hamiltonian, homogenization, cell problem, numerical approximation.
Received: 07.04.2010
Bibliographic databases:
Document Type: Article
UDC: 517.977+519.63
Language: English
Citation: M. Falcone, M. Rorro, “On the computation of the effective Hamitonian in the non convex case”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 5, 2010, 253–260
Citation in format AMSBIB
\Bibitem{FalRor10}
\by M.~Falcone, M.~Rorro
\paper On the computation of the effective Hamitonian in the non convex case
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2010
\vol 16
\issue 5
\pages 253--260
\mathnet{http://mi.mathnet.ru/timm628}
\elib{https://elibrary.ru/item.asp?id=15265852}
Linking options:
  • https://www.mathnet.ru/eng/timm628
  • https://www.mathnet.ru/eng/timm/v16/i5/p253
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:234
    Full-text PDF :124
    References:62
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024