Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2010, Volume 16, Number 5, Pages 179–186 (Mi timm620)  

Data-based evaluation of nominal model robust performance under measurement noise

V. F. Sokolov

Komi Scientific Center of Ural Branch of RAS
References:
Abstract: The problem of robust performance evaluation is considered for a nominal model of controlled plant under unknown upper bounds of disturbances and perturbations. The identification criterion is in the form of the worst-case steady-state tracking error.
Keywords: robust control, measurement noise, model validation, errors quantification.
Received: 07.01.2010
Bibliographic databases:
Document Type: Article
UDC: 517.977+519.63
Language: Russian
Citation: V. F. Sokolov, “Data-based evaluation of nominal model robust performance under measurement noise”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 5, 2010, 179–186
Citation in format AMSBIB
\Bibitem{Sok10}
\by V.~F.~Sokolov
\paper Data-based evaluation of nominal model robust performance under measurement noise
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2010
\vol 16
\issue 5
\pages 179--186
\mathnet{http://mi.mathnet.ru/timm620}
\elib{https://elibrary.ru/item.asp?id=15265844}
Linking options:
  • https://www.mathnet.ru/eng/timm620
  • https://www.mathnet.ru/eng/timm/v16/i5/p179
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024