Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2010, Volume 16, Number 3, Pages 234–239 (Mi timm596)  

This article is cited in 5 scientific papers (total in 5 papers)

On Shunkov groups with a strongly embedded almost layer-finite subgroup

V. I. Senashov

Institute of Computational Modelling, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (135 kB) Citations (5)
References:
Abstract: Infinite Shunkov groups with the following condition are studied: the normalizer of any finite nontrivial subgroup has an almost layer-finite periodic part. Under this condition, the almost layer-finiteness of the periodic part of a Shunkov group with a strongly embedded almost layer-finite subgroup is established. Earlier, the author proved the almost layer-finiteness of a Shunkov group with a strongly embedded subgroup either under the condition that all proper subgroups are almost layer-finite or under the condition that the group is periodic. The case of a strongly embedded subgroup with a Chernikov almost layer-finite periodic part was also investigated earlier.
Keywords: infinite groups, finiteness conditions, layer-finiteness, periodicity.
Received: 10.11.2009
Bibliographic databases:
Document Type: Article
UDC: 512.54
Language: Russian
Citation: V. I. Senashov, “On Shunkov groups with a strongly embedded almost layer-finite subgroup”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 3, 2010, 234–239
Citation in format AMSBIB
\Bibitem{Sen10}
\by V.~I.~Senashov
\paper On Shunkov groups with a~strongly embedded almost layer-finite subgroup
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2010
\vol 16
\issue 3
\pages 234--239
\mathnet{http://mi.mathnet.ru/timm596}
\elib{https://elibrary.ru/item.asp?id=15173484}
Linking options:
  • https://www.mathnet.ru/eng/timm596
  • https://www.mathnet.ru/eng/timm/v16/i3/p234
  • This publication is cited in the following 5 articles:
    1. A. A. Shlepkin, “O periodicheskoi chasti gruppy Shunkova, nasyschennoi lineinymi i unitarnymi gruppami stepeni 3 nad konechnymi polyami chetnoi kharakteristiki”, Tr. IMM UrO RAN, 27, no. 1, 2021, 207–219  mathnet  crossref  elib
    2. V. I. Senashov, “On periodic Shunkov's groups with almost layer-finite normalizers of finite subgroups”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 37 (2021), 118–132  mathnet  crossref
    3. V. I. Senashov, “Characterizations of the Groups With Almost Layer-Finite Periodic Parts”, Ukr. Math. J., 69:7 (2017), 1123–1131  crossref  mathscinet  isi  scopus
    4. V. I. Senashov, “On Sylow Subgroups of Some Shunkov Groups”, Ukr. Math. J., 67:3 (2015), 455–463  crossref  mathscinet  zmath  isi  elib  scopus
    5. V. I. Senashov, “On Groups with a Strongly Imbedded Subgroup Having an Almost Layer-Finite Periodic Part”, Ukr. Math. J., 64:3 (2012), 433–440  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:376
    Full-text PDF :102
    References:91
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025