Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2010, Volume 16, Number 3, Pages 195–198 (Mi timm591)  

This article is cited in 1 scientific paper (total in 1 paper)

Generating multiplets of involution of the groups $SL_n(\mathbb Z)$ and $PSL_n(\mathbb Z)$

T. V. Moiseenkova

Siberian Federal University
Full-text PDF (120 kB) Citations (1)
References:
Abstract: For the groups $PSL_n(\mathbb Z)$ for $n\ge3$ and $SL_n(\mathbb Z)$ for $n\ge3$ and $6\not=n\not=10$, the minimal number of generating involutions is found such that their product is identity.
Keywords: ring of integers, linear group, generating triples of involutions.
Received: 25.07.2009
Bibliographic databases:
Document Type: Article
UDC: 512.554.2
Language: Russian
Citation: T. V. Moiseenkova, “Generating multiplets of involution of the groups $SL_n(\mathbb Z)$ and $PSL_n(\mathbb Z)$”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 3, 2010, 195–198
Citation in format AMSBIB
\Bibitem{Moi10}
\by T.~V.~Moiseenkova
\paper Generating multiplets of involution of the groups $SL_n(\mathbb Z)$ and $PSL_n(\mathbb Z)$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2010
\vol 16
\issue 3
\pages 195--198
\mathnet{http://mi.mathnet.ru/timm591}
\elib{https://elibrary.ru/item.asp?id=15173479}
Linking options:
  • https://www.mathnet.ru/eng/timm591
  • https://www.mathnet.ru/eng/timm/v16/i3/p195
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:208
    Full-text PDF :67
    References:32
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024