Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2010, Volume 16, Number 2, Pages 63–74 (Mi timm549)  

Evolution of gas flows adjacent to vacuum under the action of gravity and Coriolis force

S. L. Deryabin, A. V. Mezentsev

Urals State University of Railway Transport
References:
Abstract: The evolution of flows of an ideal polytropic gas adjacent to vacuum is considered under the action of gravity and Coriolis force. A solution is constructed in the form of converging series. A motion law for the free gas-vacuum surface is obtained in parametric form.
Keywords: ideal polytropic gas, Coriolis force, free gas-vacuum surface, converging series.
Received: 18.06.2009
Bibliographic databases:
Document Type: Article
UDC: 517.95+533.6
Language: Russian
Citation: S. L. Deryabin, A. V. Mezentsev, “Evolution of gas flows adjacent to vacuum under the action of gravity and Coriolis force”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 2, 2010, 63–74
Citation in format AMSBIB
\Bibitem{DerMez10}
\by S.~L.~Deryabin, A.~V.~Mezentsev
\paper Evolution of gas flows adjacent to vacuum under the action of gravity and Coriolis force
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2010
\vol 16
\issue 2
\pages 63--74
\mathnet{http://mi.mathnet.ru/timm549}
\elib{https://elibrary.ru/item.asp?id=14809439}
Linking options:
  • https://www.mathnet.ru/eng/timm549
  • https://www.mathnet.ru/eng/timm/v16/i2/p63
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:392
    Full-text PDF :73
    References:38
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024