Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2010, Volume 16, Number 1, Pages 223–232 (Mi timm539)  

This article is cited in 26 scientific papers (total in 26 papers)

Differential equations of ellipsoidal estimates for reachable sets of a nonlinear dynamical control system

T. F. Filippova

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
References:
Abstract: The problem of estimating trajectory tubes of a nonlinear control system with uncertainty in initial data is considered. It is assumed that the dynamical system has a special structure, in which nonlinear terms are quadratic in phase coordinates and the values of the uncertain initial states and admissible controls are subject to ellipsoidal constraints. Differential equations are found that describe the dynamics of the ellipsoidal estimates of reachable sets of the nonlinear dynamical system under consideration. To estimate reachable sets of the nonlinear differential inclusion corresponding to the control system, we use results from the theory of ellipsoidal estimation and the theory of evolution equations for multivalued states of dynamical systems under uncertainty.
Keywords: reachable set, trajectory tubes, set-valued estimates, differential inclusions, ellipsoidal estimation, control systems, dynamical systems.
Received: 28.12.2009
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2010, Volume 271, Issue 1, Pages S75–S84
DOI: https://doi.org/10.1134/S0081543810070072
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: T. F. Filippova, “Differential equations of ellipsoidal estimates for reachable sets of a nonlinear dynamical control system”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 1, 2010, 223–232; Proc. Steklov Inst. Math. (Suppl.), 271, suppl. 1 (2010), S75–S84
Citation in format AMSBIB
\Bibitem{Fil10}
\by T.~F.~Filippova
\paper Differential equations of ellipsoidal estimates for reachable sets of a~nonlinear dynamical control system
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2010
\vol 16
\issue 1
\pages 223--232
\mathnet{http://mi.mathnet.ru/timm539}
\elib{https://elibrary.ru/item.asp?id=13073001}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2010
\vol 271
\issue , suppl. 1
\pages S75--S84
\crossref{https://doi.org/10.1134/S0081543810070072}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000284889500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79953244494}
Linking options:
  • https://www.mathnet.ru/eng/timm539
  • https://www.mathnet.ru/eng/timm/v16/i1/p223
  • This publication is cited in the following 26 articles:
    1. Elimhan N. Mahmudov, “On convexity of reachable sets of second order differential inclusions”, Applicable Analysis, 102:18 (2023), 4943  crossref
    2. V. N. Ushakov, A. A. Ershov, A. V. Ushakov, “On Integral Funnels of Controlled Systems Changed within Several Small Time Intervals”, Mech. Solids, 58:8 (2023), 2826  crossref
    3. V. N. Ushakov, A. A. Ershov, A. V. Ushakov, “On Integral Funnel of Control Systems, Changed at Several Small Time Interval”, Prikladnaya matematika i mekhanika, 87:5 (2023), 829  crossref
    4. V. N. Ushakov, A. V. Ushakov, O. A. Kuvshinov, “O konstruirovanii razreshayuschego upravleniya v zadache o sblizhenii v fiksirovannyi moment vremeni”, Izv. IMI UdGU, 58 (2021), 73–93  mathnet  crossref
    5. Tatiana F. Filippova, Springer Proceedings in Complexity, 13th Chaotic Modeling and Simulation International Conference, 2021, 195  crossref
    6. Tatiana F. Filippova, 2020 15th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (STAB), 2020, 1  crossref
    7. Gornov A.Yu., Finkelstein E.A., Zarodnyuk T.S., “Algorithm of Uniform Filling of Nonlinear Dynamic System Reachable Set Based on Maximin Problem Solution”, Optim. Lett., 13:3, SI (2019), 633–643  crossref  isi
    8. Shao L., Zhao F., Cong Yu., “Approximation of Convex Bodies By Multiple Objective Optimization and An Application in Reachable Sets”, Optimization, 67:6 (2018), 783–796  crossref  mathscinet  zmath  isi  scopus
    9. Filippova T.F., “The Hjb Approach and State Estimation For Control Systems With Uncertainty”, IFAC PAPERSONLINE, 51:13 (2018), 7–12  crossref  isi  scopus
    10. Filippova T.F., “Differential Equations For Ellipsoidal Estimates of Reachable Sets For a Class of Control Systems With Nonlinearity and Uncertainty”, IFAC PAPERSONLINE, 51:32 (2018), 770–775  crossref  isi  scopus
    11. Filippova T.F., “Ellipsoidal Estimates of Reachable Sets For Control Systems With Nonlinear Terms”, IFAC PAPERSONLINE, 50:1 (2017), 15355–15360  crossref  isi  scopus
    12. Alexandr Yu. Gornov, Tatiana S. Zarodnyuk, Evgeniya A. Finkelstein, Anton S. Anikin, “The method of uniform monotonous approximation of the reachable set border for a controllable system”, J Glob Optim, 66:1 (2016), 53  crossref
    13. A. Yu. Gornov, E. A. Finkel'shtein, “Algorithm for piecewise-linear approximation of the reachable set boundary”, Autom. Remote Control, 76:3 (2015), 385–393  mathnet  crossref  isi  elib  elib
    14. T. F. Filippova, “Estimates of reachable sets of control systems with nonlinearity and parametric perturbations”, Proc. Steklov Inst. Math. (Suppl.), 292, suppl. 1 (2016), 67–75  mathnet  crossref  mathscinet  isi  elib
    15. V. N. Ushakov, A. R. Matviichuk, A. V. Ushakov, G. V. Parshikov, “Invariantnost mnozhestv pri konstruirovanii reshenii zadachi o sblizhenii v fiksirovannyi moment vremeni”, Tr. IMM UrO RAN, 19, no. 1, 2013, 264–283  mathnet  mathscinet  elib
    16. V. N. Ushakov, A. R. Matviychuk, G. V. Parshikov, “A method for constructing a resolving control in an approach problem based on attraction to the solvability set”, Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 135–144  mathnet  crossref  mathscinet  isi  elib
    17. A. A. Davydov, V. M. Zakalyukin, “Controllability of non-linear systems: generic singularities and their stability”, Russian Math. Surveys, 67:2 (2012), 255–280  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    18. P. D. Lebedev, A. V. Ushakov, “Approximating sets on a plane with optimal sets of circles”, Autom. Remote Control, 73:3 (2012), 485–493  mathnet  crossref  isi
    19. V. N. Ushakov, P. D. Lebedev, A. R. Matviychuk, A. G. Malev, “Differential games with fixed terminal time and estimation of the instability degree of sets in these games”, Proc. Steklov Inst. Math., 277 (2012), 266–277  mathnet  crossref  mathscinet  isi  elib  elib
    20. Matviychuk O.G., “Estimation Problem for Impulsive Control Systems Under Ellipsoidal State Bounds and with Cone Constraint on the Control”, Applications of Mathematics in Engineering and Economics (AMEE'12), AIP Conference Proceedings, 1497, eds. Pasheva V., Venkov G., Amer Inst Physics, 2012, 3–12  crossref  adsnasa  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:711
    Full-text PDF :208
    References:95
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025