Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2010, Volume 16, Number 1, Pages 119–126 (Mi timm532)  

This article is cited in 17 scientific papers (total in 17 papers)

A direct method for calculating Lyapunov values of two-dimensional dynamical systems

G. A. Leonov, N. V. Kuznetsov, E. V. Kudryashova

Saint-Petersburg State University
References:
Abstract: A direct method is proposed for studying the behavior of two-dimensional dynamical systems in the critical case when the linear part of the system has two purely imaginary eigenvalues. This method allows one to construct approximations to solutions of the system and to the “turn-round” time of the trajectory in the form of a finite series in powers of the initial datum. With the help of symbolic computations and the proposed method, first approximations of a solution are constructed and expressions for the first three Lyapunov quantities of the Liénard system are written.
Keywords: Lyapunov quantities, limit cycle, symbolic computations.
Received: 04.03.2009
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2011, Volume 272, Issue 1, Pages S119–S126
DOI: https://doi.org/10.1134/S008154381102009X
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: G. A. Leonov, N. V. Kuznetsov, E. V. Kudryashova, “A direct method for calculating Lyapunov values of two-dimensional dynamical systems”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 1, 2010, 119–126; Proc. Steklov Inst. Math. (Suppl.), 272, suppl. 1 (2011), S119–S126
Citation in format AMSBIB
\Bibitem{LeoKuzKud10}
\by G.~A.~Leonov, N.~V.~Kuznetsov, E.~V.~Kudryashova
\paper A direct method for calculating Lyapunov values of two-dimensional dynamical systems
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2010
\vol 16
\issue 1
\pages 119--126
\mathnet{http://mi.mathnet.ru/timm532}
\elib{https://elibrary.ru/item.asp?id=13072994}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2011
\vol 272
\issue , suppl. 1
\pages S119--S126
\crossref{https://doi.org/10.1134/S008154381102009X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000289527400009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79954574502}
Linking options:
  • https://www.mathnet.ru/eng/timm532
  • https://www.mathnet.ru/eng/timm/v16/i1/p119
  • This publication is cited in the following 17 articles:
    1. Nikolay Kuznetsov, Timur Mokaev, Vladimir Ponomarenko, Evgeniy Seleznev, Nataliya Stankevich, Leon Chua, “Hidden attractors in Chua circuit: mathematical theory meets physical experiments”, Nonlinear Dyn, 111:6 (2023), 5859  crossref
    2. Yumagulov M.G., Akmanova S.V., Kopylova N.A., “Lyapunov Quantities in the Problem About Local Bifurcations of Non-Autonomous Periodic Dynamical Systems”, Lobachevskii J. Math., 41:9, SI (2020), 1918–1923  crossref  mathscinet  zmath  isi  scopus
    3. N. I. Gusarova, S. A. Murtazina, M. F. Fazlytdinov, M. G. Yumagulov, “Operator methods for calculating Lyapunov values in problems on local bifurcations of dynamical systems”, Ufa Math. J., 10:1 (2018), 25–48  mathnet  crossref  isi  elib
    4. Czornik A., Jurgas P., “On the Lyapunov Exponents of Infinite-Dimensional Discrete Time-Varying Linear System”, 2016 21St International Conference on Methods and Models in Automation and Robotics (Mmar), IEEE, 2016, 496–499  crossref  isi  scopus
    5. Jerzy Klamka, Elżbieta Ferenstein, Artur Babiarz, Michał Niezabitowski, “On the Reducibility of the Discrete Linear Time-Varying Systems”, AMM, 789-790 (2015), 1027  crossref
    6. S. Brezetskyi, D. Dudkowski, T. Kapitaniak, “Rare and hidden attractors in Van der Pol-Duffing oscillators”, Eur. Phys. J. Spec. Top., 224:8 (2015), 1459  crossref
    7. N.V. Kuznetsov, G.A. Leonov, “Hidden attractors in dynamical systems: systems with no equilibria, multistability and coexisting attractors”, IFAC Proceedings Volumes, 47:3 (2014), 5445  crossref
    8. Leonov G.A., Burova I.G., Aleksandrov K.D., “Visualization of Four Limit Cycles of Two-Dimensional Quadratic Systems in the Parameter Space”, Differ. Equ., 49:13 (2013), 1675–1703  crossref  mathscinet  zmath  isi  elib  scopus
    9. Leonov G.A., Kuznetsov N.V., “Hidden Attractors in Dynamical Systems. From Hidden Oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits”, Int. J. Bifurcation Chaos, 23:1 (2013), 1330002  crossref  mathscinet  zmath  isi  elib  scopus
    10. Gennady A. Leonov, Nikolay V. Kuznetsov, Advances in Intelligent Systems and Computing, 210, Nostradamus 2013: Prediction, Modeling and Analysis of Complex Systems, 2013, 5  crossref
    11. Nikolay Kuznetsov, Olga Kuznetsova, Gennady Leonov, Vladimir Vagaitsev, Lecture Notes in Electrical Engineering, 174, Informatics in Control, Automation and Robotics, 2013, 149  crossref
    12. Gennady A. Leonov, Nikolay V. Kuznetsov, Computational Methods in Applied Sciences, 27, Numerical Methods for Differential Equations, Optimization, and Technological Problems, 2013, 41  crossref
    13. N. V. Kuznetsov, O. A. Kuznetsova, G. A. Leonov, “Visualization of Four Normal Size Limit Cycles in Two-Dimensional Polynomial Quadratic System”, Differ Equ Dyn Syst, 21:1-2 (2013), 29  crossref
    14. G. A. Leonov, N. V. Kuznetsov, “Hidden oscillations in dynamical systems. 16 Hilbert's problem, Aizerman's and Kalman's conjectures, hidden attractors in Chua's circuits”, Journal of Mathematical Sciences, 201:5 (2014), 645–662  mathnet  crossref  mathscinet
    15. G. A. Leonov, N. V. Kuznetsov, E. V. Kudryashova, O. A. Kuznetsova, “Sovremennye metody simvolnykh vychislenii: lyapunovskie velichiny i 16-aya problema Gilberta”, Tr. SPIIRAN, 16 (2011), 5–36  mathnet
    16. G.A. Leonov, N.V. Kuznetsov, “Analytical-numerical methods for investigation of hidden oscillations in nonlinear control systems”, IFAC Proceedings Volumes, 44:1 (2011), 2494  crossref
    17. Leonov G.A., Kuznetsov N.V., “Limit cycles of quadratic systems with a perturbed weak focus of order 3 and a saddle equilibrium at infinity”, Dokl. Math., 82:2 (2010), 693–696  crossref  mathscinet  zmath  isi  elib  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:920
    Full-text PDF :370
    References:74
    First page:15
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025