Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2010, Volume 16, Number 1, Pages 30–39 (Mi timm525)  

This article is cited in 4 scientific papers (total in 4 papers)

On implicit function theorems at abnormal points

A. V. Arutyunovab

a Peoples Friendship University of Russia
b South Mathematical Institute of VSC RAS
Full-text PDF (184 kB) Citations (4)
References:
Abstract: We consider the equation $F(x,\sigma)=0$, $x\in K$, in which $\sigma$ is a parameter and $x$ is an unknown variable taking values in a specified convex cone $K$ lying in a Banach space $X$. This equation is investigated in a neighborhood of a given solution $(x_*,\sigma_*)$, where Robinson's constraint qualification may be violated. We introduce the 2-regularity condition, which is considerably weaker than Robinson's constraint qualification; assuming that it is satisfied, we obtain an implicit function theorem for this equation. The theorem is a generalization of the known implicit function theorems even in the case when the cone $K$ coincides with the whole space $X$.
Keywords: implicit function theorem, abnormal point, Robinson's constraint qualification, 2-regularity, 2-regularity with respect to a cone.
Received: 24.12.2009
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2010, Volume 271, Issue 1, Pages S18–S27
DOI: https://doi.org/10.1134/S0081543810070023
Bibliographic databases:
Document Type: Article
UDC: 518.9+517.97
Language: Russian
Citation: A. V. Arutyunov, “On implicit function theorems at abnormal points”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 1, 2010, 30–39; Proc. Steklov Inst. Math. (Suppl.), 271, suppl. 1 (2010), S18–S27
Citation in format AMSBIB
\Bibitem{Aru10}
\by A.~V.~Arutyunov
\paper On implicit function theorems at abnormal points
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2010
\vol 16
\issue 1
\pages 30--39
\mathnet{http://mi.mathnet.ru/timm525}
\elib{https://elibrary.ru/item.asp?id=13072987}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2010
\vol 271
\issue , suppl. 1
\pages S18--S27
\crossref{https://doi.org/10.1134/S0081543810070023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000284889500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79953236186}
Linking options:
  • https://www.mathnet.ru/eng/timm525
  • https://www.mathnet.ru/eng/timm/v16/i1/p30
  • This publication is cited in the following 4 articles:
    1. Asen L. Dontchev, “Bartle-Graves Theorem Revisited”, Set-Valued Var. Anal, 28:1 (2020), 109  crossref
    2. Gfrerer H., Mordukhovich B.S., “Robinson Stability of Parametric Constraint Systems Via Variational Analysis”, SIAM J. Optim., 27:1 (2017), 438–465  crossref  mathscinet  zmath  isi  scopus
    3. A. V. Arutyunov, “Smooth abnormal problems in extremum theory and analysis”, Russian Math. Surveys, 67:3 (2012), 403–457  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    4. Zhukovskii S.E., Mingaleeva Z.T., “Suschestvovanie i nepreryvnost neyavnoi funktsii v okrestnosti anormalnoi tochki”, Vestnik moskovskogo universiteta. seriya 15: vychislitelnaya matematika i kibernetika, 2 (2012), 10–15  mathscinet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:557
    Full-text PDF :163
    References:91
    First page:9
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025