Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2000, Volume 6, Number 1, Pages 173–189 (Mi timm502)  

This article is cited in 8 scientific papers (total in 8 papers)

The metallic means family and renormalization group techniques

V. W. de Spinadel
Abstract: We present the new family of Metallic Means (MMF), being the most paramount of its members, the Golden Mean ϕ and, in the second place, the Silver Mean σAg. Why do we call them a family? Because, besides carrying the name of a metal–the Golden Mean, the Silver Mean, the Copper Mean, the Bronze Mean, the Nickel Mean–they enjoy common mathematical properties that attach a fundamental importance to them in modern investigations about the search of universal roads to chaos. Among these applications, we have chosen the analysis of the main renormalization group techniques, which have the purpose of getting the quantitative microcharacterization of the transition from order to quantum chaos.
Received: 25.11.1999
Bibliographic databases:
Document Type: Article
Language: English
Citation: V. W. de Spinadel, “The metallic means family and renormalization group techniques”, Trudy Inst. Mat. i Mekh. UrO RAN, 6, no. 1, 2000, 173–189; Proc. Steklov Inst. Math. (Suppl.), 2000no. , suppl. 1, S194–S209
Citation in format AMSBIB
\Bibitem{De 00}
\by V.~W.~de~Spinadel
\paper The metallic means family and renormalization group techniques
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2000
\vol 6
\issue 1
\pages 173--189
\mathnet{http://mi.mathnet.ru/timm502}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2066025}
\zmath{https://zbmath.org/?q=an:1125.39300}
\elib{https://elibrary.ru/item.asp?id=12228451}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2000
\issue , suppl. 1
\pages S194--S209
Linking options:
  • https://www.mathnet.ru/eng/timm502
  • https://www.mathnet.ru/eng/timm/v6/i1/p173
  • This publication is cited in the following 8 articles:
    1. Gok M., “A Study of Submanifolds of Metallic Riemannian Manifolds”, J. Geom., 112:3 (2021), 34  crossref  mathscinet  isi  scopus
    2. Hretcanu C.E., Blaga A.M., “Types of Submanifolds in Metallic Riemannian Manifolds: a Short Survey”, Mathematics, 9:19 (2021), 2467  crossref  mathscinet  isi  scopus
    3. Turanli S., Gezer A., Cakicioglu H., “Metallic Kahler and Nearly Metallic Kahler Manifolds”, Int. J. Geom. Methods Mod. Phys., 18:09 (2021), 2150146  crossref  mathscinet  isi  scopus
    4. Efimov D., “Determinant of Three-Layer Toeplitz Matrices”, J. Integer Seq., 24:9 (2021), 21.9.7  mathscinet  isi
    5. Gezer A., Topcuoglu F., De U.Ch., “Some Notes on Metallic Kahler Manifolds”, Filomat, 35:6 (2021), 1963–1975  crossref  mathscinet  isi  scopus
    6. Shanker G., Kaur R., “Screen Pseudo Slant Lightlike Submanifolds of a Metallic Semi-Riemannian Manifold”, J. Rajasthan Acad. Phys. Sci., 20:1-2 (2021), 93–104  mathscinet  isi
    7. Jokela N., Penin J.M., Ramallo A.V., Zoakos D., “Gravity Dual of a Multilayer System”, J. High Energy Phys., 2019, no. 3, 064  crossref  mathscinet  isi  scopus
    8. Stakhov A., “The generalized golden proportions, a new theory of real numbers, and ternary mirror-symmetrical arithmetic”, Chaos Solitons & Fractals, 33:2 (2007), 315–334  crossref  mathscinet  zmath  adsnasa  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:606
    Full-text PDF :446
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025