Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 1998, Volume 5, Pages 227–246 (Mi timm477)  

Approximation theory

On Bernstein's theorem about a sequence of best approximations in spaces $L^{\varphi}$.

A. I. Vasil'ev
Abstract: Let $T=(T,\Sigma,\mu)$ be a measure space, $\sigma$-algebra $\Sigma$ containing all the sets of measure zero and a set $E$ with $0<\mu(E)<\infty$; let $Y$ be an $F$-space with a quasinorm $|\cdot|_1$ nondecreasing along each ray emanating from the origin, $\varphi\colon[0,\infty)\to[0,\infty)$ be a continuous nondecreasing semiadditive function, $\varphi(\alpha)=0\Leftrightarrow\alpha=0$. Denote by $L^{\varphi}=L^{\varphi}(T,Y)$ the linear space of all measurable mappings $f\colon T\to Y$ with $|f|:=\int_T\varphi(|f(t)|_1)d\mu(t)<\infty$. Let $L_n$ be asequence of finite-dimensional subspaces of $L^{\varphi}$ such that $L_n\subset L_{n+1}$, $L_n\neq L_{n+1}$. The problem of existence of an element $f\in L^{\varphi}$ with the preassigned best approximations $a_n$ – distances from $f$ to $L_n$ – is considered.
Received: 04.07.1997
Bibliographic databases:
Document Type: Article
UDC: 517.98
MSC: 41A65, 46E30
Language: Russian
Citation: A. I. Vasil'ev, “On Bernstein's theorem about a sequence of best approximations in spaces $L^{\varphi}$.”, Trudy Inst. Mat. i Mekh. UrO RAN, 5, 1998, 227–246
Citation in format AMSBIB
\Bibitem{Vas98}
\by A.~I.~Vasil'ev
\paper On Bernstein's theorem about a~sequence of best approximations in spaces $L^{\varphi}$.
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 1998
\vol 5
\pages 227--246
\mathnet{http://mi.mathnet.ru/timm477}
\zmath{https://zbmath.org/?q=an:1067.41033}
Linking options:
  • https://www.mathnet.ru/eng/timm477
  • https://www.mathnet.ru/eng/timm/v5/p227
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024