Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 1998, Volume 5, Pages 183–198 (Mi timm474)  

This article is cited in 20 scientific papers (total in 20 papers)

Approximation theory

Exact Jackson–Stechkin inequality in the space $L^2(\mathbb R^m)$

A. G. Babenko
Abstract: Let $\mathcal K=\mathcal K_{\sigma}(\tau,r,m)$ be the exact constant in the Jackson–Stechkin inequality
$$ E_{\sigma}(f)\leq\mathcal K\omega_{\tau}\biggl(f,\frac{\tau}{\sigma}\biggr),\quad f\in L^2(\mathbb R^m),\quad\sigma>0,\quad\tau>0,\quad r>0,\quad m=1,2,3,\dots, $$
where $E_{\sigma}(f)$ is the best $L^2$ approximation of a function $f$ by entire functions of exponential spherical type $\sigma$ and $\omega_r(f,t)$ is the $r$th spherical modulus of continuity of $f$. For $r\geq 1$, the following relations are proved:
$$ \min_{t>0}\mathcal K_{\sigma}(t,r,m)=1;\quad\tau_{(m-2)/2}\leq\rm{int}\biggl\{\tau>0\colon\mathcal K_{\sigma}(\tau,r,m)=1\biggr\}\leq 2\tau_{(m-2)/2}, $$
where $\tau_{\nu}$ is the first positive zero of the Bessel function $J_{\nu}$.
Received: 09.01.1997
Bibliographic databases:
Document Type: Article
UDC: 517.518.837
MSC: 41A17
Language: Russian
Citation: A. G. Babenko, “Exact Jackson–Stechkin inequality in the space $L^2(\mathbb R^m)$”, Trudy Inst. Mat. i Mekh. UrO RAN, 5, 1998, 183–198
Citation in format AMSBIB
\Bibitem{Bab98}
\by A.~G.~Babenko
\paper Exact Jackson--Stechkin inequality in the space $L^2(\mathbb R^m)$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 1998
\vol 5
\pages 183--198
\mathnet{http://mi.mathnet.ru/timm474}
\zmath{https://zbmath.org/?q=an:1076.41503}
Linking options:
  • https://www.mathnet.ru/eng/timm474
  • https://www.mathnet.ru/eng/timm/v5/p183
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024