Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 1998, Volume 5, Pages 67–75 (Mi timm465)  

This article is cited in 1 scientific paper (total in 1 paper)

Topology

Strong topology of $C_{\lambda}(X)$

N. V. Velichko
Abstract: Let $X$ be a completely regular space. A subset $A$ of $X$ is called bounded if the number set $f(A)$ is bounded for each continuous function $f$ on $X$. Let $\lambda$ be some family of bounded subsets of $X$. By definition, $C_{\lambda}(X)$ is the space of all real-valued continuous functions on $X$, its topology being the topology of uniform convergence on each set of $\lambda$. It is proved that the strong topology (in the sense of the theory of topological vector spaces) of $C_{\lambda}(X)$ is the topology of bounded convergence on $X$ (i.e. that of uniform convergence on each bounded subset of $X$).
Received: 14.11.1997
Bibliographic databases:
Document Type: Article
UDC: 517.982.272+515.122.55
MSC: 54C35
Language: Russian
Citation: N. V. Velichko, “Strong topology of $C_{\lambda}(X)$”, Trudy Inst. Mat. i Mekh. UrO RAN, 5, 1998, 67–75
Citation in format AMSBIB
\Bibitem{Vel98}
\by N.~V.~Velichko
\paper Strong topology of $C_{\lambda}(X)$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 1998
\vol 5
\pages 67--75
\mathnet{http://mi.mathnet.ru/timm465}
\zmath{https://zbmath.org/?q=an:0997.54022}
Linking options:
  • https://www.mathnet.ru/eng/timm465
  • https://www.mathnet.ru/eng/timm/v5/p67
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:208
    Full-text PDF :98
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024