Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2009, Volume 15, Number 4, Pages 262–269 (Mi timm442)  

This article is cited in 23 scientific papers (total in 23 papers)

Construction of set-valued estimates of reachable sets for some nonlinear dynamical systems with impulsive control

T. F. Filippova

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
References:
Abstract: A method of constructing ellipsoidal estimates of reachable sets is proposed for a nonlinear system with a scalar impulsive control and uncertainty in initial data. A special discontinuous change of time is used to transform the impulsive system under consideration into an ordinary differential inclusion without impulsive components. To estimate reachable sets of the obtained nonlinear differential inclusion, results from the theory of ellipsoidal estimation and theory of evolution equations of set-valued states of dynamical systems under uncertainty are used.
Keywords: reachable set, impulsive control, trajectory tubes, set-valued estimates, differential inclusions.
Received: 20.05.2009
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2010, Volume 269, Issue 1, Pages S95–S102
DOI: https://doi.org/10.1134/S008154381006009X
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: T. F. Filippova, “Construction of set-valued estimates of reachable sets for some nonlinear dynamical systems with impulsive control”, Trudy Inst. Mat. i Mekh. UrO RAN, 15, no. 4, 2009, 262–269; Proc. Steklov Inst. Math. (Suppl.), 269, suppl. 1 (2010), S95–S102
Citation in format AMSBIB
\Bibitem{Fil09}
\by T.~F.~Filippova
\paper Construction of set-valued estimates of reachable sets for some nonlinear dynamical systems with impulsive control
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2009
\vol 15
\issue 4
\pages 262--269
\mathnet{http://mi.mathnet.ru/timm442}
\elib{https://elibrary.ru/item.asp?id=12952771}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2010
\vol 269
\issue , suppl. 1
\pages S95--S102
\crossref{https://doi.org/10.1134/S008154381006009X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84962476802}
Linking options:
  • https://www.mathnet.ru/eng/timm442
  • https://www.mathnet.ru/eng/timm/v15/i4/p262
  • This publication is cited in the following 23 articles:
    1. V. N. Ushakov, A. A. Ershov, “O parametricheskoi zavisimosti ob'ema integralnykh voronok i ikh approksimatsii”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 32:3 (2022), 447–462  mathnet  crossref  mathscinet
    2. V. N. Ushakov, A. A. Ershov, A. V. Ushakov, “Control Systems Depending on a Parameter: Reachable Sets and Integral Funnels”, Mech. Solids, 57:7 (2022), 1672  crossref
    3. Vladimir N. Ushakov, Aleksandr A. Ershov, Andrey V. Ushakov, Oleg A. Kuvshinov, “Control system depending on a parameter”, Ural Math. J., 7:1 (2021), 120–159  mathnet  crossref  mathscinet  zmath
    4. V. N. Ushakov, A. A. Ershov, “Reachable sets and integral funnels of differential inclusions depending on a parameter”, Dokl. Math., 104:1 (2021), 200–204  mathnet  crossref  crossref  zmath  elib
    5. Tatiana F. Filippova, Studies in Computational Intelligence, 838, Recent Advances in Computational Optimization, 2020, 121  crossref
    6. Tatiana F. Filippova, Lecture Notes in Computer Science, 11189, Numerical Methods and Applications, 2019, 97  crossref
    7. V. A. Dykhta, O. N. Samsonyuk, “Pozitsionnyi printsip minimuma dlya impulsnykh protsessov”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 25 (2018), 46–62  mathnet  crossref
    8. Ushakov V.N., Ukhobotov V.I., Matviychuk A.R., Parshikov G.V., “On Some Nonlinear Control System Problems on a Finite Time Interval”, IFAC PAPERSONLINE, 51:32 (2018), 832–837  crossref  mathscinet  isi  scopus
    9. Ushakov V.N., Ukhobotov V.I., Ushakov A.V., Parhsikov G.V., “On Game Approach Problems on a Finite Time Interval”, AIP Conference Proceedings, 2040, eds. Simos T., Kalogiratou Z., Monovasilis T., Amer Inst Physics, 2018, 050003  crossref  isi
    10. Oxana G. Matviychuk, 2018 14th International Conference “Stability and Oscillations of Nonlinear Control Systems” (Pyatnitskiy's Conference) (STAB), 2018, 1  crossref
    11. Tatiana F. Filippova, Lecture Notes in Computer Science, 10665, Large-Scale Scientific Computing, 2018, 210  crossref
    12. O. N. Samsonyuk, M. V. Staritsyn, “Impulsnye upravlyaemye sistemy s traektoriyami ogranichennoi p-variatsii”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 19 (2017), 164–177  mathnet  crossref
    13. T. F. Filippova, “Otsenki mnozhestv dostizhimosti sistem s impulsnym upravleniem, neopredelennostyu i nelineinostyu”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 19 (2017), 205–216  mathnet  crossref
    14. G. V. Parshikov, “O priblizhennom vychislenii mnozhestva razreshimosti v zadache o sblizhenii statsionarnoi upravlyaemoi sistemy na konechnom promezhutke vremeni”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 27:2 (2017), 210–221  mathnet  crossref  elib
    15. Matviychuk A.R., Ukhobotov V.I., Ushakov A.V., Ushakov V.N., “The Approach Problem of a Nonlinear Controlled System in a Finite Time Interval”, Pmm-J. Appl. Math. Mech., 81:2 (2017), 114–128  crossref  mathscinet  isi  scopus
    16. V. N. Ushakov, A. R. Matviichuk, “K resheniyu zadach upravleniya nelineinymi sistemami na konechnom promezhutke vremeni”, Izv. IMI UdGU, 2015, no. 2(46), 202–215  mathnet  elib
    17. T. F. Filippova, “Estimates of reachable sets of control systems with nonlinearity and parametric perturbations”, Proc. Steklov Inst. Math. (Suppl.), 292, suppl. 1 (2016), 67–75  mathnet  crossref  mathscinet  isi  elib
    18. A. V. Ushakov, “Ob odnom variante priblizhennogo postroeniya razreshayuschikh upravlenii v zadache o sblizhenii”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2012, no. 4, 94–107  mathnet
    19. Tatiana F. Filippova, Oksana G. Matviychuk, Lecture Notes in Computer Science, 7116, Large-Scale Scientific Computing, 2012, 123  crossref
    20. N. I. Zhelonkina, A. N. Sesekin, S. P. Sorokin, “Ob ustoichivosti lineinykh sistem s impulsnym vozdeistviem v matritse sistemy i zapazdyvaniem”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2011, no. 1, 40–46  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:539
    Full-text PDF :165
    References:82
    First page:2
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025