Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2009, Volume 15, Number 4, Pages 183–194 (Mi timm435)  

This article is cited in 12 scientific papers (total in 12 papers)

Minimax and viscosity solutions in optimization problems for hereditary systems

N. Yu. Lukoyanov

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
References:
Abstract: For a dynamical system with discrete and distributed time delays, a control problem under disturbance or counteraction is considered. The problem is formalized in the context of the game-theoretical approach in the class of control strategies with memory. The problem is associated with a functional Hamilton–Jacobi type equation with coinvariant derivatives. The minimax and viscosity approaches to a generalized solution of this equation are discussed. It is shown that, under the same condition at the right endpoint, the minimax and viscosity solutions coincide, thereby uniquely defining the functional of optimal guaranteed result in the control problem
Keywords: optimal control, differential games, time-delay systems, Hamilton–Jacobi equations, minimax solution, viscosity solution.
Received: 14.04.2009
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2010, Volume 269, Issue 1, Pages S214–S225
DOI: https://doi.org/10.1134/S0081543810060179
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: N. Yu. Lukoyanov, “Minimax and viscosity solutions in optimization problems for hereditary systems”, Trudy Inst. Mat. i Mekh. UrO RAN, 15, no. 4, 2009, 183–194; Proc. Steklov Inst. Math. (Suppl.), 269, suppl. 1 (2010), S214–S225
Citation in format AMSBIB
\Bibitem{Luk09}
\by N.~Yu.~Lukoyanov
\paper Minimax and viscosity solutions in optimization problems for hereditary systems
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2009
\vol 15
\issue 4
\pages 183--194
\mathnet{http://mi.mathnet.ru/timm435}
\elib{https://elibrary.ru/item.asp?id=12952764}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2010
\vol 269
\issue , suppl. 1
\pages S214--S225
\crossref{https://doi.org/10.1134/S0081543810060179}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84962468865}
Linking options:
  • https://www.mathnet.ru/eng/timm435
  • https://www.mathnet.ru/eng/timm/v15/i4/p183
  • This publication is cited in the following 12 articles:
    1. Elena Bandini, Christian Keller, “Path-Dependent Hamilton–Jacobi Equations with u-Dependence and Time-Measurable Hamiltonians”, Appl Math Optim, 91:2 (2025)  crossref
    2. M. I. Gomoyunov, N. Yu. Lukoyanov, “Minimax solutions of Hamilton–Jacobi equations in dynamic optimization problems for hereditary systems”, Russian Math. Surveys, 79:2 (2024), 229–324  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. Daniel Hernández-Hernández, Hidehiro Kaise, “Path-dependent zero-sum deterministic games with intermediate Hamiltonians”, NACO, 2024  crossref
    4. M.I. Gomoyunov, A.R. Plaksin, “Equivalence of minimax and viscosity solutions of path-dependent Hamilton–Jacobi equations”, Journal of Functional Analysis, 285:11 (2023), 110155  crossref
    5. Anton Plaksin, “Viscosity Solutions of Hamilton–Jacobi Equations for Neutral-Type Systems”, Appl Math Optim, 88:1 (2023)  crossref
    6. Mikhail Igorevich Gomoyunov, “Minimax solutions of Hamilton–Jacobi equations with fractional coinvariant derivatives”, ESAIM: COCV, 28 (2022), 23  crossref
    7. M. I. Gomoyunov, “O kriteriyakh minimaksnykh reshenii uravnenii Gamiltona - Yakobi s koinvariantnymi proizvodnymi drobnogo poryadka”, Tr. IMM UrO RAN, 27, no. 3, 2021, 25–42  mathnet  crossref  elib
    8. Anton Plaksin, “Viscosity Solutions of Hamilton–Jacobi–Bellman–Isaacs Equations for Time-Delay Systems”, SIAM J. Control Optim., 59:3 (2021), 1951  crossref
    9. Mikhail I. Gomoyunov, Nikolai Yu. Lukoyanov, Anton R. Plaksin, “Path-Dependent Hamilton–Jacobi Equations: The Minimax Solutions Revised”, Appl Math Optim, 84:S1 (2021), 1087  crossref
    10. Anton Plaksin, “Minimax and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations for Time-Delay Systems”, J Optim Theory Appl, 187:1 (2020), 22  crossref
    11. Bayraktar E., Keller Ch., “Path-Dependent Hamilton–Jacobi Equations in Infinite Dimensions”, J. Funct. Anal., 275:8 (2018), 2096–2161  crossref  mathscinet  zmath  isi  scopus
    12. N. Yu. Lukoyanov, “On Hamilton–Jacobi formalism in time-delay control systems”, Tr. IMM UrO RAN, 16, no. 5, 2010, 269–277  mathnet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:589
    Full-text PDF :204
    References:99
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025