Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2009, Volume 15, Number 4, Pages 82–94 (Mi timm428)  

This article is cited in 36 scientific papers (total in 36 papers)

Estimates of reachable sets of multidimensional control systems with nonlinear interconnections

M. I. Gusev

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
References:
Abstract: The paper is devoted to the problem of constructing external estimates for the reachable set of a multidimensional control system by means of vector estimators. A system is considered that permits a decomposition into several independent subsystems with simple structure (for example, linear subsystems), which are connected to each other by means of nonlinear interconnections. For each of the subsystems, an external estimate of the reachable set is assumed to be known; this estimate is representable in the form of a level set of some function satisfying a differential inequality. An estimate for the reachable set of the united system is constructed with the use of estimates for subsystems. The method of deriving the estimates is based on constructing comparison systems for analogs of vector Lyapunov functions (cost functions).
Keywords: control system, reachable set, comparison principle, vector Lyapunov function.
Received: 24.05.2009
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2010, Volume 269, Issue 1, Pages S134–S146
DOI: https://doi.org/10.1134/S008154381006012X
Bibliographic databases:
Document Type: Article
UDC: 517.977.1
Language: Russian
Citation: M. I. Gusev, “Estimates of reachable sets of multidimensional control systems with nonlinear interconnections”, Trudy Inst. Mat. i Mekh. UrO RAN, 15, no. 4, 2009, 82–94; Proc. Steklov Inst. Math. (Suppl.), 269, suppl. 1 (2010), S134–S146
Citation in format AMSBIB
\Bibitem{Gus09}
\by M.~I.~Gusev
\paper Estimates of reachable sets of multidimensional control systems with nonlinear interconnections
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2009
\vol 15
\issue 4
\pages 82--94
\mathnet{http://mi.mathnet.ru/timm428}
\elib{https://elibrary.ru/item.asp?id=12952757}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2010
\vol 269
\issue , suppl. 1
\pages S134--S146
\crossref{https://doi.org/10.1134/S008154381006012X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84962376495}
Linking options:
  • https://www.mathnet.ru/eng/timm428
  • https://www.mathnet.ru/eng/timm/v15/i4/p82
  • This publication is cited in the following 36 articles:
    1. V. N. Ushakov, A. A. Ershov, A. V. Ushakov, “On Integral Funnel of Control Systems, Changed at Several Small Time Interval”, Prikladnaâ matematika i mehanika, 87:5 (2023), 829  crossref
    2. V. N. Ushakov, A. A. Ershov, A. V. Ushakov, “On Integral Funnels of Controlled Systems Changed within Several Small Time Intervals”, Mech. Solids, 58:8 (2023), 2826  crossref
    3. V. N. Ushakov, A. A. Ershov, “O parametricheskoi zavisimosti ob'ema integralnykh voronok i ikh approksimatsii”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 32:3 (2022), 447–462  mathnet  crossref  mathscinet
    4. V. N. Ushakov, A. A. Ershov, A. V. Ushakov, “Control Systems Depending on a Parameter: Reachable Sets and Integral Funnels”, Mech. Solids, 57:7 (2022), 1672  crossref
    5. Vladimir N. Ushakov, Aleksandr A. Ershov, Andrey V. Ushakov, Oleg A. Kuvshinov, “Control system depending on a parameter”, Ural Math. J., 7:1 (2021), 120–159  mathnet  crossref  mathscinet  zmath
    6. V. N. Ushakov, A. V. Ushakov, O. A. Kuvshinov, “O konstruirovanii razreshayuschego upravleniya v zadache o sblizhenii v fiksirovannyi moment vremeni”, Izv. IMI UdGU, 58 (2021), 73–93  mathnet  crossref
    7. V. N. Ushakov, A. A. Ershov, “Reachable sets and integral funnels of differential inclusions depending on a parameter”, Dokl. Math., 104:1 (2021), 200–204  mathnet  crossref  crossref  zmath  elib
    8. Ushakov V.N., Ukhobotov V.I., Matviychuk A.R., Parshikov G.V., “On Some Nonlinear Control System Problems on a Finite Time Interval”, IFAC PAPERSONLINE, 51:32 (2018), 832–837  crossref  mathscinet  isi  scopus
    9. Ushakov V.N. Ukhobotov V.I. Ushakov A.V. Parhsikov G.V., “On Game Approach Problems on a Finite Time Interval”, AIP Conference Proceedings, 2040, ed. Simos T. Kalogiratou Z. Monovasilis T., Amer Inst Physics, 2018, 050003  crossref  isi
    10. G. V. Parshikov, “O priblizhennom vychislenii mnozhestva razreshimosti v zadache o sblizhenii statsionarnoi upravlyaemoi sistemy na konechnom promezhutke vremeni”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 27:2 (2017), 210–221  mathnet  crossref  elib
    11. Matviychuk A.R., Ukhobotov V.I., Ushakov A. V. and Ushakov V.N., “The Approach Problem of a Nonlinear Controlled System in a Finite Time Interval”, Pmm-J. Appl. Math. Mech., 81:2 (2017), 114–128  crossref  mathscinet  isi  scopus
    12. V. N. Ushakov, V. I. Ukhobotov, A. V. Ushakov, G. V. Parshikov, “On solving approach problems for control systems”, Proc. Steklov Inst. Math., 291 (2015), 263–278  mathnet  crossref  crossref  isi  elib
    13. V. N. Ushakov, A. R. Matviichuk, “K resheniyu zadach upravleniya nelineinymi sistemami na konechnom promezhutke vremeni”, Izv. IMI UdGU, 2015, no. 2(46), 202–215  mathnet  elib
    14. Sinyakov V.V., “Method For Computing Exterior and Interior Approximations To the Reachability Sets of Bilinear Differential Systems”, Differ. Equ., 51:8 (2015), 1097–1111  crossref  mathscinet  zmath  isi  elib  scopus
    15. V. N. Ushakov, N. G. Lavrov, A. V. Ushakov, “Konstruirovanie reshenii v zadache o sblizhenii statsionarnoi upravlyaemoi sistemy”, Tr. IMM UrO RAN, 20, no. 4, 2014, 277–286  mathnet  mathscinet  elib
    16. M. I. Gusev, “O metode shtrafnykh funktsii v zadache postroeniya mnozhestv dostizhimosti upravlyaemykh sistem s fazovymi ogranicheniyami”, Tr. IMM UrO RAN, 19, no. 1, 2013, 81–86  mathnet  mathscinet  elib
    17. V. N. Ushakov, A. R. Matviichuk, A. V. Ushakov, G. V. Parshikov, “Invariantnost mnozhestv pri konstruirovanii reshenii zadachi o sblizhenii v fiksirovannyi moment vremeni”, Tr. IMM UrO RAN, 19, no. 1, 2013, 264–283  mathnet  mathscinet  elib
    18. V. N. Ushakov, A. R. Matviychuk, G. V. Parshikov, “A method for constructing a resolving control in an approach problem based on attraction to the solvability set”, Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 135–144  mathnet  crossref  mathscinet  isi  elib
    19. P. D. Lebedev, A. A. Uspenskii, V. N. Ushakov, “Algoritmy nailuchshei approksimatsii ploskikh mnozhestv ob'edineniyami krugov”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2013, no. 4, 88–99  mathnet
    20. P. D. Lebedev, D. S. Bukharov, “Approksimatsiya mnogougolnikov nailuchshimi naborami krugov”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 6:3 (2013), 72–87  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:748
    Full-text PDF :262
    References:102
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025