Abstract:
A solution is given for the problem of constructing a unit vector field collinear to the field of its curl. The solution is based on the use of a suitably parametrized orthogonal transformation of a unit vector field that is potential in R3. The result is stated in the theorem that contains the recipe for constructing the required field.
Citation:
V. P. Vereshchagin, Yu. N. Subbotin, N. I. Chernykh, “On the construction of unit longitudinal-vortex vector fields with the use of smooth mappings”, Trudy Inst. Mat. i Mekh. UrO RAN, 14, no. 3, 2008, 82–91; Proc. Steklov Inst. Math. (Suppl.), 264, suppl. 1 (2009), S116–S125
\Bibitem{VerSubChe08}
\by V.~P.~Vereshchagin, Yu.~N.~Subbotin, N.~I.~Chernykh
\paper On the construction of unit longitudinal-vortex vector fields with the use of smooth mappings
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2008
\vol 14
\issue 3
\pages 82--91
\mathnet{http://mi.mathnet.ru/timm42}
\elib{https://elibrary.ru/item.asp?id=11929747}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2009
\vol 264
\issue , suppl. 1
\pages S116--S125
\crossref{https://doi.org/10.1134/S0081543809050095}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000265511100009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65349194034}
Linking options:
https://www.mathnet.ru/eng/timm42
https://www.mathnet.ru/eng/timm/v14/i3/p82
This publication is cited in the following 8 articles:
Alexander Kuznetsov, Evgeny Shinder, “Derived categories of Fano threefolds and degenerations”, Invent. math., 2024
Laura Pertusi, Paolo Stellari, “Categorical Torelli theorems: results and open problems”, Rend. Circ. Mat. Palermo, II. Ser, 72:5 (2023), 2949
“Sovmestnaya nauchnaya deyatelnost Yu. N. Subbotina i N. I. Chernykh”, Tr. IMM UrO RAN, 17, no. 3, 2011, 4–7
“Yu. N. Subbotin and N. I. Chernykh's joint research activities”, Proc. Steklov Inst. Math. (Suppl.), 277:S1 (2012), –
V. P. Vereschagin, Yu. N. Subbotin, N. I. Chernykh, “K postroeniyu potentsialnykh i poperechno vikhrevykh vektornykh polei s liniyami nulevoi krivizny”, Tr. IMM UrO RAN, 16, no. 4, 2010, 117–127
V. P. Vereshchagin, Yu. N. Subbotin, N. I. Chernykh, “Transformation that changes the geometric structure of a vector field”, Proc. Steklov Inst. Math. (Suppl.), 265, suppl. 1 (2009), S118–S128
V. P. Vereschagin, Yu. N. Subbotin, N. I. Chernykh, “Klass vsekh gladkikh edinichnykh aksialno simmetrichnykh vektornykh polei, prodolno vikhrevykh v $R^3$”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 9:4(1) (2009), 11–23
V. P. Vereshchagin, Yu. N. Subbotin, N. I. Chernykh, “Longitudinal-vortex unit vector fields from the class of axially symmetric fields”, Proc. Steklov Inst. Math. (Suppl.), 264, suppl. 1 (2009), S126–S132