Abstract:
The paper is concerned with studying approach game problems for linear conflict-controlled processes with fractional derivatives of arbitrary order. Namely, the classical Riemann–Liouville fractional derivatives, Dzhrbashyan–Nersesyan or Caputo regularized derivatives, and Miller–Ross sequential derivatives are considered. Under fixed controls of the players, solutions are presented in the form of analogs of the Cauchy formula with the use of generalized matrix Mittag-Leffler functions. The investigation is based on the method of resolving functions, which allows one to obtain sufficient conditions for the termination of the approach problem in some guaranteed time. The results are exemplified by model game problems with a simple matrix and separated motions of fractional order $\pi$and $e$.
Citation:
A. A. Chikrii, I. I. Matichin, “Game problems for fractional-order linear systems”, Trudy Inst. Mat. i Mekh. UrO RAN, 15, no. 3, 2009, 262–278; Proc. Steklov Inst. Math. (Suppl.), 268, suppl. 1 (2010), S54–S70
\Bibitem{ChiMat09}
\by A.~A.~Chikrii, I.~I.~Matichin
\paper Game problems for fractional-order linear systems
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2009
\vol 15
\issue 3
\pages 262--278
\mathnet{http://mi.mathnet.ru/timm419}
\elib{https://elibrary.ru/item.asp?id=12834745}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2010
\vol 268
\issue , suppl. 1
\pages S54--S70
\crossref{https://doi.org/10.1134/S0081543810050056}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000276615600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952277996}
Linking options:
https://www.mathnet.ru/eng/timm419
https://www.mathnet.ru/eng/timm/v15/i3/p262
This publication is cited in the following 27 articles:
Mikhail I. Gomoyunov, Nikolai Yu. Lukoyanov, “O lineino-kvadratichnykh differentsialnykh igrakh dlya sistem drobnogo poryadka”, MTIP, 15:2 (2023), 18–32
Yu. I. Kharkevych, O. G. Khanin, “Asymptotic Properties of the Solutions of Higher-Order Differential Equations on Generalized Hölder Classes”, Cybern Syst Anal, 59:4 (2023), 633
M. I. Gomoyunov, N. Yu. Lukoyanov, “On Linear-Quadratic Differential Games for Fractional-Order Systems”, Dokl. Math., 108:S1 (2023), S122
Yu. I. Kharkevych, “Exact Values of the Approximations of Differentiable Functions by Poisson-Type Integrals”, Cybern Syst Anal, 59:2 (2023), 274
T. V. Zhyhallo, Yu. I. Kharkevych, “Some Asymptotic Properties of the Solutions of Laplace Equations in a Unit Disk”, Cybern Syst Anal, 59:3 (2023), 449
O. G. Khanin, B. M. Borsuk, “Approximate Characteristics of Generalized Poisson Operators on Zygmund Classes”, Cybern Syst Anal, 59:1 (2023), 156
N. N. Petrov, A. I. Machtakova, “Linear Group Pursuit Problem with Fractional Derivatives, Simple Matrices, and Different Possibilities of Players”, Diff Equat, 59:7 (2023), 933
A. I. Machtakova, N. N. Petrov, “On a Linear Group Pursuit Problem with Fractional Derivatives”, Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S175–S187
Yu. I. Kharkevych, “On Some Asymptotic Properties of Solutions to Biharmonic Equations”, Cybern Syst Anal, 58:2 (2022), 251
T. V. Zhyhallo, Yu. I. Kharkevych, “Fourier Transform of the Summatory Abel–Poisson Function”, Cybern Syst Anal, 58:6 (2022), 957
M. I. Gomoyunov, N. Yu. Lukoyanov, “Differential Games in Fractional-Order Systems: Inequalities for Directional Derivatives of the Value Functional”, Proc. Steklov Inst. Math., 315 (2021), 65–84
Rappoport I.S., “Solving the Problem of Approach of Controlled Objects in Dynamic Game Problems”, Cybern. Syst. Anal., 57:5 (2021), 775–786
Gomoyunov I M., “Differential Games For Fractional-Order Systems: Hamilton-Jacobi-Bellman-Isaacs Equation and Optimal Feedback Strategies”, Mathematics, 9:14 (2021), 1667
Petrov N.N., “Multiple Capture in a Group Pursuit Problem With Fractional Derivatives and Phase Restrictions”, Mathematics, 9:11 (2021), 1171
Rappoport I.S., “Method of Resolving Functions For Game Problems of Approach of Controlled Objects With Different Inertia”, Cybern. Syst. Anal., 57:2 (2021), 296–312
Valentyn Sobchuk, Inna Kal'Chuk, Yurii Kharkevych, Galyna Kharkevych, 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT), 2021, 76
Igor' V. Izmest'ev, Lecture Notes in Control and Information Sciences - Proceedings, Stability, Control and Differential Games, 2020, 345
Tarasov V.E., “On History of Mathematical Economics: Application of Fractional Calculus”, Mathematics, 7:6 (2019), 509
N. N. Petrov, A. Ya. Narmanov, “Multiple Capture of a Given Number of Evaders in a Problem with Fractional Derivatives and a Simple Matrix”, Proc. Steklov Inst. Math. (Suppl.), 309, suppl. 1 (2020), S105–S115
Petrov N.N., “Group Pursuit Problem in a Differential Game With Fractional Derivatives, State Constraints, and Simple Matrix”, Differ. Equ., 55:6 (2019), 841–848