Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2009, Volume 15, Number 3, Pages 202–218 (Mi timm416)  

This article is cited in 8 scientific papers (total in 8 papers)

On the structure of locally Lipschitz minimax solutions of the Hamilton–Jacobi–Bellman equation in terms of classical characteristics

N. N. Subbotina, E. A. Kolpakova

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Full-text PDF (314 kB) Citations (8)
References:
Abstract: Necessary and sufficient conditions for the minimax solution to the Cauchy problem for the Hamilton–Jacobi–Bellman equation are obtained as viability conditions for classical characteristics inside the graph of the minimax solution. Using this property, a representative formula for a one-dimensional conservation law in terms of classical characteristics is derived. An estimate of the numerical integration of the characteristic system is presented and errors of numerical realizations of representative formulas are determined for the conservation law and its potential equal to the minimax solution of the Hamilton–Jacobi–Bellman equation.
Keywords: Hamilton–Jacobi–Bellman equations, minimax/viscosity solutions, conservation laws, entropy solutions, method of characteristics.
Received: 29.10.2008
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2010, Volume 268, Issue 1, Pages S222–S239
DOI: https://doi.org/10.1134/S0081543810050160
Bibliographic databases:
Document Type: Article
UDC: 519.857
Language: Russian
Citation: N. N. Subbotina, E. A. Kolpakova, “On the structure of locally Lipschitz minimax solutions of the Hamilton–Jacobi–Bellman equation in terms of classical characteristics”, Trudy Inst. Mat. i Mekh. UrO RAN, 15, no. 3, 2009, 202–218; Proc. Steklov Inst. Math. (Suppl.), 268, suppl. 1 (2010), S222–S239
Citation in format AMSBIB
\Bibitem{SubKol09}
\by N.~N.~Subbotina, E.~A.~Kolpakova
\paper On the structure of locally Lipschitz minimax solutions of the Hamilton--Jacobi--Bellman equation in terms of classical characteristics
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2009
\vol 15
\issue 3
\pages 202--218
\mathnet{http://mi.mathnet.ru/timm416}
\elib{https://elibrary.ru/item.asp?id=12834742}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2010
\vol 268
\issue , suppl. 1
\pages S222--S239
\crossref{https://doi.org/10.1134/S0081543810050160}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000276615600016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952254019}
Linking options:
  • https://www.mathnet.ru/eng/timm416
  • https://www.mathnet.ru/eng/timm/v15/i3/p202
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:490
    Full-text PDF :159
    References:87
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024