Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2009, Volume 15, Number 3, Pages 202–218 (Mi timm416)  

This article is cited in 8 scientific papers (total in 8 papers)

On the structure of locally Lipschitz minimax solutions of the Hamilton–Jacobi–Bellman equation in terms of classical characteristics

N. N. Subbotina, E. A. Kolpakova

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Full-text PDF (314 kB) Citations (8)
References:
Abstract: Necessary and sufficient conditions for the minimax solution to the Cauchy problem for the Hamilton–Jacobi–Bellman equation are obtained as viability conditions for classical characteristics inside the graph of the minimax solution. Using this property, a representative formula for a one-dimensional conservation law in terms of classical characteristics is derived. An estimate of the numerical integration of the characteristic system is presented and errors of numerical realizations of representative formulas are determined for the conservation law and its potential equal to the minimax solution of the Hamilton–Jacobi–Bellman equation.
Keywords: Hamilton–Jacobi–Bellman equations, minimax/viscosity solutions, conservation laws, entropy solutions, method of characteristics.
Received: 29.10.2008
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2010, Volume 268, Issue 1, Pages S222–S239
DOI: https://doi.org/10.1134/S0081543810050160
Bibliographic databases:
Document Type: Article
UDC: 519.857
Language: Russian
Citation: N. N. Subbotina, E. A. Kolpakova, “On the structure of locally Lipschitz minimax solutions of the Hamilton–Jacobi–Bellman equation in terms of classical characteristics”, Trudy Inst. Mat. i Mekh. UrO RAN, 15, no. 3, 2009, 202–218; Proc. Steklov Inst. Math. (Suppl.), 268, suppl. 1 (2010), S222–S239
Citation in format AMSBIB
\Bibitem{SubKol09}
\by N.~N.~Subbotina, E.~A.~Kolpakova
\paper On the structure of locally Lipschitz minimax solutions of the Hamilton--Jacobi--Bellman equation in terms of classical characteristics
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2009
\vol 15
\issue 3
\pages 202--218
\mathnet{http://mi.mathnet.ru/timm416}
\elib{https://elibrary.ru/item.asp?id=12834742}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2010
\vol 268
\issue , suppl. 1
\pages S222--S239
\crossref{https://doi.org/10.1134/S0081543810050160}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000276615600016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952254019}
Linking options:
  • https://www.mathnet.ru/eng/timm416
  • https://www.mathnet.ru/eng/timm/v15/i3/p202
  • This publication is cited in the following 8 articles:
    1. Ivan Yegorov, Peter M. Dower, “Perspectives on Characteristics Based Curse-of-Dimensionality-Free Numerical Approaches for Solving Hamilton–Jacobi Equations”, Appl Math Optim, 83:1 (2021), 1  crossref
    2. Rodin A.S. Shagalova L.G., “Bifurcation Points of the Generalized Solution of the Hamilton-Jacobi-Bellman Equation”, IFAC PAPERSONLINE, 51:32 (2018), 866–870  crossref  isi  scopus
    3. A. A. Uspenskii, “Neobkhodimye usloviya suschestvovaniya psevdovershin kraevogo mnozhestva v zadache Dirikhle dlya uravneniya eikonala”, Tr. IMM UrO RAN, 21, no. 1, 2015, 250–263  mathnet  mathscinet  elib
    4. A. S. Rodin, “O strukture singulyarnogo mnozhestva kusochno-gladkogo minimaksnogo resheniya uravneniya Gamiltona — Yakobi — Bellmana”, Tr. IMM UrO RAN, 21, no. 2, 2015, 198–205  mathnet  mathscinet  elib
    5. A. A. Uspenskii, “Derivatives by virtue of diffeomorphisms and their applications in control theory and geometrical optics”, Proc. Steklov Inst. Math. (Suppl.), 293, suppl. 1 (2016), 238–253  mathnet  crossref  mathscinet  isi  elib
    6. I. Yegorov, Y. Todorov, “Synthesis of optimal control in a mathematical model of tumour–immune dynamics”, Optim Control Appl Methods, 36:1 (2015), 93  crossref
    7. N. N. Subbotina, E. A. Kolpakova, “Method of characteristics for optimal control problems and conservation laws”, Journal of Mathematical Sciences, 199:5 (2014), 588–595  mathnet  crossref  mathscinet
    8. E. A. Kolpakova, “Obobschennyi metod kharakteristik v teorii uravnenii Gamiltona–Yakobi i zakonov sokhraneniya”, Tr. IMM UrO RAN, 16, no. 5, 2010, 95–102  mathnet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:535
    Full-text PDF :179
    References:111
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025