Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2008, Volume 14, Number 3, Pages 38–42 (Mi timm38)  

This article is cited in 2 scientific papers (total in 2 papers)

Asymptotic behavior of the maximal zero of a polynomial orthogonal on a segment with a nonclassical weight

V. M. Badkov

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Full-text PDF (235 kB) Citations (2)
References:
Abstract: Let $\{p_n(t)\}_{n=0}^\infty$ be a system of algebraic polynomials orthonormal on the segment $[-1,1]$ with a weight $p(t)$; let $\{x_{n,\nu}^{(p)}\}_{\nu=1}^n$ be zeros of a polynomial $p_n(t)$ ($x_{n,\nu}^{(p)}=\cos\theta_{n,\nu}^{(p)}$; $0<\theta_{n,1}^{(p)}<\theta_{n,2}^{(p)}<\dots<\theta_{n,n}^{(p)}<\pi$). It is known that, for a wide class of weights $p(t)$ containing the Jacobi weight, the quantities $\theta_{n,1}^{(p)}$ and $1-x_{n,1}^{(p)}$ coincide in order with $n^{-1}$ and $n^{-2}$, respectively. In the present paper, we prove that, if the weight $p(t)$ has the form $p(t)=4(1-t^2)^{-1}\{\ln^2[(1+t)/(1-t)]+\pi^2\}^{-1}$, then the following asymptotic formulas are valid as $n\to\infty$:
$$ \theta_{n,1}^{(p)}=\frac{\sqrt2}{n\sqrt{\ln(n+1)}}\biggl[1+O\biggl(\frac1{\ln(n+1)}\biggr)\biggr],\quad x_{n,1}^{(p)}=1-\frac1{n^2\ln(n+1)}+O\biggl(\frac1{\ln(n+1)}\biggr). $$
Received: 29.04.2008
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2009, Volume 264, Issue 1, Pages S39–S43
DOI: https://doi.org/10.1134/S0081543809050034
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: V. M. Badkov, “Asymptotic behavior of the maximal zero of a polynomial orthogonal on a segment with a nonclassical weight”, Trudy Inst. Mat. i Mekh. UrO RAN, 14, no. 3, 2008, 38–42; Proc. Steklov Inst. Math. (Suppl.), 264, suppl. 1 (2009), S39–S43
Citation in format AMSBIB
\Bibitem{Bad08}
\by V.~M.~Badkov
\paper Asymptotic behavior of the maximal zero of a~polynomial orthogonal on a~segment with a~nonclassical weight
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2008
\vol 14
\issue 3
\pages 38--42
\mathnet{http://mi.mathnet.ru/timm38}
\elib{https://elibrary.ru/item.asp?id=11929743}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2009
\vol 264
\issue , suppl. 1
\pages S39--S43
\crossref{https://doi.org/10.1134/S0081543809050034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000265511100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65349139672}
Linking options:
  • https://www.mathnet.ru/eng/timm38
  • https://www.mathnet.ru/eng/timm/v14/i3/p38
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:216
    Full-text PDF :77
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024