Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2008, Volume 14, Number 3, Pages 3–18 (Mi timm36)  

This article is cited in 3 scientific papers (total in 3 papers)

On the almost everywhere convergence of sequences of multiple rectangular Fourier sums

N. Yu. Antonov

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Full-text PDF (356 kB) Citations (3)
References:
Abstract: In the case when a sequence of $d$-dimensional vectors $\mathrm n_k=(n_k^1,n_k^2,\dots,n_k^d)$ with nonnegative integer coordinates satisfies the condition
$$ n_k^j=\alpha_j m_k+O(1),\quad k\in\mathbb N,\quad1\le j\le d, $$
where $\alpha_1\dots\alpha_d>0$, а $m_k\in\mathbb N$, $\lim_{k\to\infty}m_k=\infty$, under some conditions on the function $\varphi\colon[0,+\infty)\to[0,+\infty)$, it is proved that, if the trigonometric Fourier series of any function from $\varphi(L)([-\pi,\pi))$ converges almost everywhere, then, for any $d\in\mathbb N$ and all $f\in\varphi(L)(\ln^+L)^{d-1}([-\pi,\pi)d)$, the sequence $S_{\mathrm{n}_k}(f,\mathrm x)$ of the rectangular partial sums of the multiple trigonometric Fourier series of the function $f$, as well as the corresponding sequences of partial sums of all of its conjugate series, converges almost everywhere.
Received: 05.05.2008
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2009, Volume 264, Issue 1, Pages S1–S18
DOI: https://doi.org/10.1134/S0081543809050010
Bibliographic databases:
Document Type: Article
UDC: 517.518
Language: Russian
Citation: N. Yu. Antonov, “On the almost everywhere convergence of sequences of multiple rectangular Fourier sums”, Trudy Inst. Mat. i Mekh. UrO RAN, 14, no. 3, 2008, 3–18; Proc. Steklov Inst. Math. (Suppl.), 264, suppl. 1 (2009), S1–S18
Citation in format AMSBIB
\Bibitem{Ant08}
\by N.~Yu.~Antonov
\paper On the almost everywhere convergence of sequences of multiple rectangular Fourier sums
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2008
\vol 14
\issue 3
\pages 3--18
\mathnet{http://mi.mathnet.ru/timm36}
\elib{https://elibrary.ru/item.asp?id=11929741}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2009
\vol 264
\issue , suppl. 1
\pages S1--S18
\crossref{https://doi.org/10.1134/S0081543809050010}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000265511100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65349190777}
Linking options:
  • https://www.mathnet.ru/eng/timm36
  • https://www.mathnet.ru/eng/timm/v14/i3/p3
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:517
    Full-text PDF :161
    References:93
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025