|
Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2008, Volume 14, Number 3, Pages 3–18
(Mi timm36)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
On the almost everywhere convergence of sequences of multiple rectangular Fourier sums
N. Yu. Antonov Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Abstract:
In the case when a sequence of $d$-dimensional vectors $\mathrm n_k=(n_k^1,n_k^2,\dots,n_k^d)$ with nonnegative integer coordinates satisfies the condition
$$
n_k^j=\alpha_j m_k+O(1),\quad k\in\mathbb N,\quad1\le j\le d,
$$
where $\alpha_1\dots\alpha_d>0$, а $m_k\in\mathbb N$, $\lim_{k\to\infty}m_k=\infty$, under some conditions on the function $\varphi\colon[0,+\infty)\to[0,+\infty)$, it is proved that, if the trigonometric Fourier series of any function from $\varphi(L)([-\pi,\pi))$ converges almost everywhere, then, for any $d\in\mathbb N$ and all $f\in\varphi(L)(\ln^+L)^{d-1}([-\pi,\pi)d)$, the sequence $S_{\mathrm{n}_k}(f,\mathrm x)$ of the rectangular partial sums of the multiple trigonometric Fourier series of the function $f$, as well as the corresponding sequences of partial sums of all of its conjugate series, converges almost everywhere.
Received: 05.05.2008
Citation:
N. Yu. Antonov, “On the almost everywhere convergence of sequences of multiple rectangular Fourier sums”, Trudy Inst. Mat. i Mekh. UrO RAN, 14, no. 3, 2008, 3–18; Proc. Steklov Inst. Math. (Suppl.), 264, suppl. 1 (2009), S1–S18
Linking options:
https://www.mathnet.ru/eng/timm36 https://www.mathnet.ru/eng/timm/v14/i3/p3
|
Statistics & downloads: |
Abstract page: | 517 | Full-text PDF : | 161 | References: | 93 |
|